Author: David M. Burton
Publisher: Addison-Wesley
ISBN:
Category : Mathematics
Languages : en
Pages : 328
Book Description
A First Course in Rings and Ideals
A First Course in Noncommutative Rings
Author: T.Y. Lam
Publisher: Springer Science & Business Media
ISBN: 1468404067
Category : Mathematics
Languages : en
Pages : 410
Book Description
One of my favorite graduate courses at Berkeley is Math 251, a one-semester course in ring theory offered to second-year level graduate students. I taught this course in the Fall of 1983, and more recently in the Spring of 1990, both times focusing on the theory of noncommutative rings. This book is an outgrowth of my lectures in these two courses, and is intended for use by instructors and graduate students in a similar one-semester course in basic ring theory. Ring theory is a subject of central importance in algebra. Historically, some of the major discoveries in ring theory have helped shape the course of development of modern abstract algebra. Today, ring theory is a fer tile meeting ground for group theory (group rings), representation theory (modules), functional analysis (operator algebras), Lie theory (enveloping algebras), algebraic geometry (finitely generated algebras, differential op erators, invariant theory), arithmetic (orders, Brauer groups), universal algebra (varieties of rings), and homological algebra (cohomology of rings, projective modules, Grothendieck and higher K-groups). In view of these basic connections between ring theory and other branches of mathemat ics, it is perhaps no exaggeration to say that a course in ring theory is an indispensable part of the education for any fledgling algebraist. The purpose of my lectures was to give a general introduction to the theory of rings, building on what the students have learned from a stan dard first-year graduate course in abstract algebra.
Publisher: Springer Science & Business Media
ISBN: 1468404067
Category : Mathematics
Languages : en
Pages : 410
Book Description
One of my favorite graduate courses at Berkeley is Math 251, a one-semester course in ring theory offered to second-year level graduate students. I taught this course in the Fall of 1983, and more recently in the Spring of 1990, both times focusing on the theory of noncommutative rings. This book is an outgrowth of my lectures in these two courses, and is intended for use by instructors and graduate students in a similar one-semester course in basic ring theory. Ring theory is a subject of central importance in algebra. Historically, some of the major discoveries in ring theory have helped shape the course of development of modern abstract algebra. Today, ring theory is a fer tile meeting ground for group theory (group rings), representation theory (modules), functional analysis (operator algebras), Lie theory (enveloping algebras), algebraic geometry (finitely generated algebras, differential op erators, invariant theory), arithmetic (orders, Brauer groups), universal algebra (varieties of rings), and homological algebra (cohomology of rings, projective modules, Grothendieck and higher K-groups). In view of these basic connections between ring theory and other branches of mathemat ics, it is perhaps no exaggeration to say that a course in ring theory is an indispensable part of the education for any fledgling algebraist. The purpose of my lectures was to give a general introduction to the theory of rings, building on what the students have learned from a stan dard first-year graduate course in abstract algebra.
A First Course in Abstract Algebra
Author: Marlow Anderson
Publisher: CRC Press
ISBN: 1420057111
Category : Mathematics
Languages : en
Pages : 684
Book Description
Most abstract algebra texts begin with groups, then proceed to rings and fields. While groups are the logically simplest of the structures, the motivation for studying groups can be somewhat lost on students approaching abstract algebra for the first time. To engage and motivate them, starting with something students know and abstracting from there
Publisher: CRC Press
ISBN: 1420057111
Category : Mathematics
Languages : en
Pages : 684
Book Description
Most abstract algebra texts begin with groups, then proceed to rings and fields. While groups are the logically simplest of the structures, the motivation for studying groups can be somewhat lost on students approaching abstract algebra for the first time. To engage and motivate them, starting with something students know and abstracting from there
A Course in Ring Theory
Author: Donald S. Passman
Publisher: American Mathematical Soc.
ISBN: 9780821869383
Category : Mathematics
Languages : en
Pages : 324
Book Description
Projective modules: Modules and homomorphisms Projective modules Completely reducible modules Wedderburn rings Artinian rings Hereditary rings Dedekind domains Projective dimension Tensor products Local rings Polynomial rings: Skew polynomial rings Grothendieck groups Graded rings and modules Induced modules Syzygy theorem Patching theorem Serre conjecture Big projectives Generic flatness Nullstellensatz Injective modules: Injective modules Injective dimension Essential extensions Maximal ring of quotients Classical ring of quotients Goldie rings Uniform dimension Uniform injective modules Reduced rank Index
Publisher: American Mathematical Soc.
ISBN: 9780821869383
Category : Mathematics
Languages : en
Pages : 324
Book Description
Projective modules: Modules and homomorphisms Projective modules Completely reducible modules Wedderburn rings Artinian rings Hereditary rings Dedekind domains Projective dimension Tensor products Local rings Polynomial rings: Skew polynomial rings Grothendieck groups Graded rings and modules Induced modules Syzygy theorem Patching theorem Serre conjecture Big projectives Generic flatness Nullstellensatz Injective modules: Injective modules Injective dimension Essential extensions Maximal ring of quotients Classical ring of quotients Goldie rings Uniform dimension Uniform injective modules Reduced rank Index
Integral Closure of Ideals, Rings, and Modules
Author: Craig Huneke
Publisher: Cambridge University Press
ISBN: 0521688604
Category : Mathematics
Languages : en
Pages : 446
Book Description
Ideal for graduate students and researchers, this book presents a unified treatment of the central notions of integral closure.
Publisher: Cambridge University Press
ISBN: 0521688604
Category : Mathematics
Languages : en
Pages : 446
Book Description
Ideal for graduate students and researchers, this book presents a unified treatment of the central notions of integral closure.
Rings and Ideals
Author: Neal H. McCoy
Publisher: American Mathematical Soc.
ISBN: 1614440085
Category : Mathematics
Languages : en
Pages : 229
Book Description
This monograph presents an introduction to that branch of abstract algebra having to do with the theory of rings, with some emphasis on the role of ideals in the theory. Except for a knowledge of certain fundamental theorems about determinants which is assumed in Chapter VIII, and at one point in Chapter VII, the book is almost entirely self-contained. Of course, the reader must have a certain amount of “mathematical maturity” in order to understand the illustrative examples and also to grasp the significance of the abstract approach. However, as far as formal technique is concerned, little more than the elements of algebra are presupposed.
Publisher: American Mathematical Soc.
ISBN: 1614440085
Category : Mathematics
Languages : en
Pages : 229
Book Description
This monograph presents an introduction to that branch of abstract algebra having to do with the theory of rings, with some emphasis on the role of ideals in the theory. Except for a knowledge of certain fundamental theorems about determinants which is assumed in Chapter VIII, and at one point in Chapter VII, the book is almost entirely self-contained. Of course, the reader must have a certain amount of “mathematical maturity” in order to understand the illustrative examples and also to grasp the significance of the abstract approach. However, as far as formal technique is concerned, little more than the elements of algebra are presupposed.
Ring and Module Theory
Author: Toma Albu
Publisher: Springer Science & Business Media
ISBN: 3034600070
Category : Mathematics
Languages : en
Pages : 204
Book Description
This book is a collection of invited papers and articles, many presented at the 2008 International Conference on Ring and Module Theory. The papers explore the latest in various areas of algebra, including ring theory, module theory and commutative algebra.
Publisher: Springer Science & Business Media
ISBN: 3034600070
Category : Mathematics
Languages : en
Pages : 204
Book Description
This book is a collection of invited papers and articles, many presented at the 2008 International Conference on Ring and Module Theory. The papers explore the latest in various areas of algebra, including ring theory, module theory and commutative algebra.
Exercises in Modules and Rings
Author: T.Y. Lam
Publisher: Springer Science & Business Media
ISBN: 0387488995
Category : Mathematics
Languages : en
Pages : 427
Book Description
This volume offers a compendium of exercises of varying degree of difficulty in the theory of modules and rings. It is the companion volume to GTM 189. All exercises are solved in full detail. Each section begins with an introduction giving the general background and the theoretical basis for the problems that follow.
Publisher: Springer Science & Business Media
ISBN: 0387488995
Category : Mathematics
Languages : en
Pages : 427
Book Description
This volume offers a compendium of exercises of varying degree of difficulty in the theory of modules and rings. It is the companion volume to GTM 189. All exercises are solved in full detail. Each section begins with an introduction giving the general background and the theoretical basis for the problems that follow.
A First Course in Module Theory
Author: M. E. Keating
Publisher: World Scientific Publishing Company
ISBN: 9781860940965
Category : Mathematics
Languages : en
Pages : 250
Book Description
An introduction to module theory for students with some knowledge of linear algebra and elementary ring theory. Expounds the basics of module theory, including methods of comparing, constructing and decomposing modules, then presents the structure theory of modules over Euclidean domains. Concluding chapters look at two standard forms for a square matrix, and projective modules over rings in general. Annotation copyrighted by Book News, Inc., Portland, OR
Publisher: World Scientific Publishing Company
ISBN: 9781860940965
Category : Mathematics
Languages : en
Pages : 250
Book Description
An introduction to module theory for students with some knowledge of linear algebra and elementary ring theory. Expounds the basics of module theory, including methods of comparing, constructing and decomposing modules, then presents the structure theory of modules over Euclidean domains. Concluding chapters look at two standard forms for a square matrix, and projective modules over rings in general. Annotation copyrighted by Book News, Inc., Portland, OR
Introduction To Commutative Algebra
Author: Michael F. Atiyah
Publisher: CRC Press
ISBN: 0429973268
Category : Mathematics
Languages : en
Pages : 140
Book Description
First Published in 2018. This book grew out of a course of lectures given to third year undergraduates at Oxford University and it has the modest aim of producing a rapid introduction to the subject. It is designed to be read by students who have had a first elementary course in general algebra. On the other hand, it is not intended as a substitute for the more voluminous tracts such as Zariski-Samuel or Bourbaki. We have concentrated on certain central topics, and large areas, such as field theory, are not touched. In content we cover rather more ground than Northcott and our treatment is substantially different in that, following the modern trend, we put more emphasis on modules and localization.
Publisher: CRC Press
ISBN: 0429973268
Category : Mathematics
Languages : en
Pages : 140
Book Description
First Published in 2018. This book grew out of a course of lectures given to third year undergraduates at Oxford University and it has the modest aim of producing a rapid introduction to the subject. It is designed to be read by students who have had a first elementary course in general algebra. On the other hand, it is not intended as a substitute for the more voluminous tracts such as Zariski-Samuel or Bourbaki. We have concentrated on certain central topics, and large areas, such as field theory, are not touched. In content we cover rather more ground than Northcott and our treatment is substantially different in that, following the modern trend, we put more emphasis on modules and localization.