Author: Hansjörg Geiges
Publisher: Springer Nature
ISBN: 3031360648
Category : Mathematics
Languages : en
Pages : 203
Book Description
This textbook, based on a one-semester course taught several times by the authors, provides a self-contained, comprehensive yet concise introduction to the theory of pseudoholomorphic curves. Gromov’s nonsqueezing theorem in symplectic topology is taken as a motivating example, and a complete proof using pseudoholomorphic discs is presented. A sketch of the proof is discussed in the first chapter, with succeeding chapters guiding the reader through the details of the mathematical methods required to establish compactness, regularity, and transversality results. Concrete examples illustrate many of the more complicated concepts, and well over 100 exercises are distributed throughout the text. This approach helps the reader to gain a thorough understanding of the powerful analytical tools needed for the study of more advanced topics in symplectic topology. /divThis text can be used as the basis for a graduate course, and it is also immensely suitable for independent study. Prerequisites include complex analysis, differential topology, and basic linear functional analysis; no prior knowledge of symplectic geometry is assumed. This book is also part of the Virtual Series on Symplectic Geometry.
A Course on Holomorphic Discs
Author: Hansjörg Geiges
Publisher: Springer Nature
ISBN: 3031360648
Category : Mathematics
Languages : en
Pages : 203
Book Description
This textbook, based on a one-semester course taught several times by the authors, provides a self-contained, comprehensive yet concise introduction to the theory of pseudoholomorphic curves. Gromov’s nonsqueezing theorem in symplectic topology is taken as a motivating example, and a complete proof using pseudoholomorphic discs is presented. A sketch of the proof is discussed in the first chapter, with succeeding chapters guiding the reader through the details of the mathematical methods required to establish compactness, regularity, and transversality results. Concrete examples illustrate many of the more complicated concepts, and well over 100 exercises are distributed throughout the text. This approach helps the reader to gain a thorough understanding of the powerful analytical tools needed for the study of more advanced topics in symplectic topology. /divThis text can be used as the basis for a graduate course, and it is also immensely suitable for independent study. Prerequisites include complex analysis, differential topology, and basic linear functional analysis; no prior knowledge of symplectic geometry is assumed. This book is also part of the Virtual Series on Symplectic Geometry.
Publisher: Springer Nature
ISBN: 3031360648
Category : Mathematics
Languages : en
Pages : 203
Book Description
This textbook, based on a one-semester course taught several times by the authors, provides a self-contained, comprehensive yet concise introduction to the theory of pseudoholomorphic curves. Gromov’s nonsqueezing theorem in symplectic topology is taken as a motivating example, and a complete proof using pseudoholomorphic discs is presented. A sketch of the proof is discussed in the first chapter, with succeeding chapters guiding the reader through the details of the mathematical methods required to establish compactness, regularity, and transversality results. Concrete examples illustrate many of the more complicated concepts, and well over 100 exercises are distributed throughout the text. This approach helps the reader to gain a thorough understanding of the powerful analytical tools needed for the study of more advanced topics in symplectic topology. /divThis text can be used as the basis for a graduate course, and it is also immensely suitable for independent study. Prerequisites include complex analysis, differential topology, and basic linear functional analysis; no prior knowledge of symplectic geometry is assumed. This book is also part of the Virtual Series on Symplectic Geometry.
Holomorphic Curves in Low Dimensions
Author: Chris Wendl
Publisher: Springer
ISBN: 3319913719
Category : Mathematics
Languages : en
Pages : 303
Book Description
This monograph provides an accessible introduction to the applications of pseudoholomorphic curves in symplectic and contact geometry, with emphasis on dimensions four and three. The first half of the book focuses on McDuff's characterization of symplectic rational and ruled surfaces, one of the classic early applications of holomorphic curve theory. The proof presented here uses the language of Lefschetz fibrations and pencils, thus it includes some background on these topics, in addition to a survey of the required analytical results on holomorphic curves. Emphasizing applications rather than technical results, the analytical survey mostly refers to other sources for proofs, while aiming to provide precise statements that are widely applicable, plus some informal discussion of the analytical ideas behind them. The second half of the book then extends this program in two complementary directions: (1) a gentle introduction to Gromov-Witten theory and complete proof of the classification of uniruled symplectic 4-manifolds; and (2) a survey of punctured holomorphic curves and their applications to questions from 3-dimensional contact topology, such as classifying the symplectic fillings of planar contact manifolds. This book will be particularly useful to graduate students and researchers who have basic literacy in symplectic geometry and algebraic topology, and would like to learn how to apply standard techniques from holomorphic curve theory without dwelling more than necessary on the analytical details. This book is also part of the Virtual Series on Symplectic Geometry http://www.springer.com/series/16019
Publisher: Springer
ISBN: 3319913719
Category : Mathematics
Languages : en
Pages : 303
Book Description
This monograph provides an accessible introduction to the applications of pseudoholomorphic curves in symplectic and contact geometry, with emphasis on dimensions four and three. The first half of the book focuses on McDuff's characterization of symplectic rational and ruled surfaces, one of the classic early applications of holomorphic curve theory. The proof presented here uses the language of Lefschetz fibrations and pencils, thus it includes some background on these topics, in addition to a survey of the required analytical results on holomorphic curves. Emphasizing applications rather than technical results, the analytical survey mostly refers to other sources for proofs, while aiming to provide precise statements that are widely applicable, plus some informal discussion of the analytical ideas behind them. The second half of the book then extends this program in two complementary directions: (1) a gentle introduction to Gromov-Witten theory and complete proof of the classification of uniruled symplectic 4-manifolds; and (2) a survey of punctured holomorphic curves and their applications to questions from 3-dimensional contact topology, such as classifying the symplectic fillings of planar contact manifolds. This book will be particularly useful to graduate students and researchers who have basic literacy in symplectic geometry and algebraic topology, and would like to learn how to apply standard techniques from holomorphic curve theory without dwelling more than necessary on the analytical details. This book is also part of the Virtual Series on Symplectic Geometry http://www.springer.com/series/16019
J-holomorphic Curves and Symplectic Topology
Author: Dusa McDuff
Publisher: American Mathematical Soc.
ISBN: 0821887467
Category : Mathematics
Languages : en
Pages : 744
Book Description
The main goal of this book is to establish the fundamental theorems of the subject in full and rigourous detail. In particular, the book contains complete proofs of Gromov's compactness theorem for spheres, of the gluing theorem for spheres, and of the associatively of quantum multiplication in the semipositive case. The book can also serve as an introduction to current work in symplectic topology.
Publisher: American Mathematical Soc.
ISBN: 0821887467
Category : Mathematics
Languages : en
Pages : 744
Book Description
The main goal of this book is to establish the fundamental theorems of the subject in full and rigourous detail. In particular, the book contains complete proofs of Gromov's compactness theorem for spheres, of the gluing theorem for spheres, and of the associatively of quantum multiplication in the semipositive case. The book can also serve as an introduction to current work in symplectic topology.
$J$-Holomorphic Curves and Quantum Cohomology
Author: Dusa McDuff
Publisher: American Mathematical Soc.
ISBN: 0821803328
Category : Mathematics
Languages : en
Pages : 220
Book Description
J -holomorphic curves revolutionized the study of symplectic geometry when Gromov first introduced them in 1985. Through quantum cohomology, these curves are now linked to many of the most exciting new ideas in mathematical physics. This book presents the first coherent and full account of the theory of J -holomorphic curves, the details of which are presently scattered in various research papers. The first half of the book is an expository account of the field, explaining the main technical aspects. McDuff and Salamon give complete proofs of Gromov's compactness theorem for spheres and of the existence of the Gromov-Witten invariants. The second half of the book focuses on the definition of quantum cohomology. The authors establish that the quantum multiplication exists and is associative on appropriate manifolds. They then describe the Givental-Kim calculation of the quantum cohomology of flag manifolds, leading to quantum Chern classes and Witten's calculation for Grassmanians, which relates to the Verlinde algebra. The Dubrovin connection, Gromov-Witten potential on quantum cohomology, and curve counting formulas are also discussed.
Publisher: American Mathematical Soc.
ISBN: 0821803328
Category : Mathematics
Languages : en
Pages : 220
Book Description
J -holomorphic curves revolutionized the study of symplectic geometry when Gromov first introduced them in 1985. Through quantum cohomology, these curves are now linked to many of the most exciting new ideas in mathematical physics. This book presents the first coherent and full account of the theory of J -holomorphic curves, the details of which are presently scattered in various research papers. The first half of the book is an expository account of the field, explaining the main technical aspects. McDuff and Salamon give complete proofs of Gromov's compactness theorem for spheres and of the existence of the Gromov-Witten invariants. The second half of the book focuses on the definition of quantum cohomology. The authors establish that the quantum multiplication exists and is associative on appropriate manifolds. They then describe the Givental-Kim calculation of the quantum cohomology of flag manifolds, leading to quantum Chern classes and Witten's calculation for Grassmanians, which relates to the Verlinde algebra. The Dubrovin connection, Gromov-Witten potential on quantum cohomology, and curve counting formulas are also discussed.
Topics in Singularity Theory
Author: Alekseĭ Nikolaevich Khovanskiĭ
Publisher: American Mathematical Soc.
ISBN: 9780821808078
Category : Geometry, Projective
Languages : en
Pages : 276
Book Description
Publisher: American Mathematical Soc.
ISBN: 9780821808078
Category : Geometry, Projective
Languages : en
Pages : 276
Book Description
Lagrangian Intersection Floer Theory
Author: Kenji Fukaya
Publisher: American Mathematical Soc.
ISBN: 0821852507
Category : Mathematics
Languages : en
Pages : 426
Book Description
This is a two-volume series research monograph on the general Lagrangian Floer theory and on the accompanying homological algebra of filtered $A_\infty$-algebras. This book provides the most important step towards a rigorous foundation of the Fukaya category in general context. In Volume I, general deformation theory of the Floer cohomology is developed in both algebraic and geometric contexts. An essentially self-contained homotopy theory of filtered $A_\infty$ algebras and $A_\infty$ bimodules and applications of their obstruction-deformation theory to the Lagrangian Floer theory are presented. Volume II contains detailed studies of two of the main points of the foundation of the theory: transversality and orientation. The study of transversality is based on the virtual fundamental chain techniques (the theory of Kuranishi structures and their multisections) and chain level intersection theories. A detailed analysis comparing the orientations of the moduli spaces and their fiber products is carried out. A self-contained account of the general theory of Kuranishi structures is also included in the appendix of this volume.
Publisher: American Mathematical Soc.
ISBN: 0821852507
Category : Mathematics
Languages : en
Pages : 426
Book Description
This is a two-volume series research monograph on the general Lagrangian Floer theory and on the accompanying homological algebra of filtered $A_\infty$-algebras. This book provides the most important step towards a rigorous foundation of the Fukaya category in general context. In Volume I, general deformation theory of the Floer cohomology is developed in both algebraic and geometric contexts. An essentially self-contained homotopy theory of filtered $A_\infty$ algebras and $A_\infty$ bimodules and applications of their obstruction-deformation theory to the Lagrangian Floer theory are presented. Volume II contains detailed studies of two of the main points of the foundation of the theory: transversality and orientation. The study of transversality is based on the virtual fundamental chain techniques (the theory of Kuranishi structures and their multisections) and chain level intersection theories. A detailed analysis comparing the orientations of the moduli spaces and their fiber products is carried out. A self-contained account of the general theory of Kuranishi structures is also included in the appendix of this volume.
A Course in Complex Analysis and Riemann Surfaces
Author: Wilhelm Schlag
Publisher: American Mathematical Society
ISBN: 0821898477
Category : Mathematics
Languages : en
Pages : 402
Book Description
Complex analysis is a cornerstone of mathematics, making it an essential element of any area of study in graduate mathematics. Schlag's treatment of the subject emphasizes the intuitive geometric underpinnings of elementary complex analysis that naturally lead to the theory of Riemann surfaces. The book begins with an exposition of the basic theory of holomorphic functions of one complex variable. The first two chapters constitute a fairly rapid, but comprehensive course in complex analysis. The third chapter is devoted to the study of harmonic functions on the disk and the half-plane, with an emphasis on the Dirichlet problem. Starting with the fourth chapter, the theory of Riemann surfaces is developed in some detail and with complete rigor. From the beginning, the geometric aspects are emphasized and classical topics such as elliptic functions and elliptic integrals are presented as illustrations of the abstract theory. The special role of compact Riemann surfaces is explained, and their connection with algebraic equations is established. The book concludes with three chapters devoted to three major results: the Hodge decomposition theorem, the Riemann-Roch theorem, and the uniformization theorem. These chapters present the core technical apparatus of Riemann surface theory at this level. This text is intended as a detailed, yet fast-paced intermediate introduction to those parts of the theory of one complex variable that seem most useful in other areas of mathematics, including geometric group theory, dynamics, algebraic geometry, number theory, and functional analysis. More than seventy figures serve to illustrate concepts and ideas, and the many problems at the end of each chapter give the reader ample opportunity for practice and independent study.
Publisher: American Mathematical Society
ISBN: 0821898477
Category : Mathematics
Languages : en
Pages : 402
Book Description
Complex analysis is a cornerstone of mathematics, making it an essential element of any area of study in graduate mathematics. Schlag's treatment of the subject emphasizes the intuitive geometric underpinnings of elementary complex analysis that naturally lead to the theory of Riemann surfaces. The book begins with an exposition of the basic theory of holomorphic functions of one complex variable. The first two chapters constitute a fairly rapid, but comprehensive course in complex analysis. The third chapter is devoted to the study of harmonic functions on the disk and the half-plane, with an emphasis on the Dirichlet problem. Starting with the fourth chapter, the theory of Riemann surfaces is developed in some detail and with complete rigor. From the beginning, the geometric aspects are emphasized and classical topics such as elliptic functions and elliptic integrals are presented as illustrations of the abstract theory. The special role of compact Riemann surfaces is explained, and their connection with algebraic equations is established. The book concludes with three chapters devoted to three major results: the Hodge decomposition theorem, the Riemann-Roch theorem, and the uniformization theorem. These chapters present the core technical apparatus of Riemann surface theory at this level. This text is intended as a detailed, yet fast-paced intermediate introduction to those parts of the theory of one complex variable that seem most useful in other areas of mathematics, including geometric group theory, dynamics, algebraic geometry, number theory, and functional analysis. More than seventy figures serve to illustrate concepts and ideas, and the many problems at the end of each chapter give the reader ample opportunity for practice and independent study.
Handbook of Complex Variables
Author: Steven G. Krantz
Publisher: Springer Science & Business Media
ISBN: 1461215889
Category : Mathematics
Languages : en
Pages : 301
Book Description
This book is written to be a convenient reference for the working scientist, student, or engineer who needs to know and use basic concepts in complex analysis. It is not a book of mathematical theory. It is instead a book of mathematical practice. All the basic ideas of complex analysis, as well as many typical applica tions, are treated. Since we are not developing theory and proofs, we have not been obliged to conform to a strict logical ordering of topics. Instead, topics have been organized for ease of reference, so that cognate topics appear in one place. Required background for reading the text is minimal: a good ground ing in (real variable) calculus will suffice. However, the reader who gets maximum utility from the book will be that reader who has had a course in complex analysis at some time in his life. This book is a handy com pendium of all basic facts about complex variable theory. But it is not a textbook, and a person would be hard put to endeavor to learn the subject by reading this book.
Publisher: Springer Science & Business Media
ISBN: 1461215889
Category : Mathematics
Languages : en
Pages : 301
Book Description
This book is written to be a convenient reference for the working scientist, student, or engineer who needs to know and use basic concepts in complex analysis. It is not a book of mathematical theory. It is instead a book of mathematical practice. All the basic ideas of complex analysis, as well as many typical applica tions, are treated. Since we are not developing theory and proofs, we have not been obliged to conform to a strict logical ordering of topics. Instead, topics have been organized for ease of reference, so that cognate topics appear in one place. Required background for reading the text is minimal: a good ground ing in (real variable) calculus will suffice. However, the reader who gets maximum utility from the book will be that reader who has had a course in complex analysis at some time in his life. This book is a handy com pendium of all basic facts about complex variable theory. But it is not a textbook, and a person would be hard put to endeavor to learn the subject by reading this book.
Complex Variables
Author: Steven G. Krantz
Publisher: CRC Press
ISBN: 1584885807
Category : Mathematics
Languages : en
Pages : 443
Book Description
From the algebraic properties of a complete number field, to the analytic properties imposed by the Cauchy integral formula, to the geometric qualities originating from conformality, Complex Variables: A Physical Approach with Applications and MATLAB explores all facets of this subject, with particular emphasis on using theory in practice. The first five chapters encompass the core material of the book. These chapters cover fundamental concepts, holomorphic and harmonic functions, Cauchy theory and its applications, and isolated singularities. Subsequent chapters discuss the argument principle, geometric theory, and conformal mapping, followed by a more advanced discussion of harmonic functions. The author also presents a detailed glimpse of how complex variables are used in the real world, with chapters on Fourier and Laplace transforms as well as partial differential equations and boundary value problems. The final chapter explores computer tools, including Mathematica®, MapleTM, and MATLAB®, that can be employed to study complex variables. Each chapter contains physical applications drawing from the areas of physics and engineering. Offering new directions for further learning, this text provides modern students with a powerful toolkit for future work in the mathematical sciences.
Publisher: CRC Press
ISBN: 1584885807
Category : Mathematics
Languages : en
Pages : 443
Book Description
From the algebraic properties of a complete number field, to the analytic properties imposed by the Cauchy integral formula, to the geometric qualities originating from conformality, Complex Variables: A Physical Approach with Applications and MATLAB explores all facets of this subject, with particular emphasis on using theory in practice. The first five chapters encompass the core material of the book. These chapters cover fundamental concepts, holomorphic and harmonic functions, Cauchy theory and its applications, and isolated singularities. Subsequent chapters discuss the argument principle, geometric theory, and conformal mapping, followed by a more advanced discussion of harmonic functions. The author also presents a detailed glimpse of how complex variables are used in the real world, with chapters on Fourier and Laplace transforms as well as partial differential equations and boundary value problems. The final chapter explores computer tools, including Mathematica®, MapleTM, and MATLAB®, that can be employed to study complex variables. Each chapter contains physical applications drawing from the areas of physics and engineering. Offering new directions for further learning, this text provides modern students with a powerful toolkit for future work in the mathematical sciences.
Holomorphic Curves in Symplectic Geometry
Author: Michele Audin
Publisher: Birkhäuser
ISBN: 3034885083
Category : Mathematics
Languages : en
Pages : 333
Book Description
This book is devoted to pseudo-holomorphic curve methods in symplectic geometry. It contains an introduction to symplectic geometry and relevant techniques of Riemannian geometry, proofs of Gromov's compactness theorem, an investigation of local properties of holomorphic curves, including positivity of intersections, and applications to Lagrangian embeddings problems. The chapters are based on a series of lectures given previously by the authors M. Audin, A. Banyaga, P. Gauduchon, F. Labourie, J. Lafontaine, F. Lalonde, Gang Liu, D. McDuff, M.-P. Muller, P. Pansu, L. Polterovich, J.C. Sikorav. In an attempt to make this book accessible also to graduate students, the authors provide the necessary examples and techniques needed to understand the applications of the theory. The exposition is essentially self-contained and includes numerous exercises.
Publisher: Birkhäuser
ISBN: 3034885083
Category : Mathematics
Languages : en
Pages : 333
Book Description
This book is devoted to pseudo-holomorphic curve methods in symplectic geometry. It contains an introduction to symplectic geometry and relevant techniques of Riemannian geometry, proofs of Gromov's compactness theorem, an investigation of local properties of holomorphic curves, including positivity of intersections, and applications to Lagrangian embeddings problems. The chapters are based on a series of lectures given previously by the authors M. Audin, A. Banyaga, P. Gauduchon, F. Labourie, J. Lafontaine, F. Lalonde, Gang Liu, D. McDuff, M.-P. Muller, P. Pansu, L. Polterovich, J.C. Sikorav. In an attempt to make this book accessible also to graduate students, the authors provide the necessary examples and techniques needed to understand the applications of the theory. The exposition is essentially self-contained and includes numerous exercises.