Author: Alexander Ingram
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 552
Book Description
A Concise System of Mathematics ...
Author: Alexander Ingram
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 552
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 552
Book Description
A Concise System of Mathematics, in theory and practice ... With a copious appendix ... Second edition, ... with ... additions, ... tables, etc
Author: Alexander INGRAM (of Leith.)
Publisher:
ISBN:
Category :
Languages : en
Pages : 444
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 444
Book Description
A concise system of mathematics ... With many important additions and improvements ... by James Trotter ... Eighth edition
Author: Alexander INGRAM (of Leith.)
Publisher:
ISBN:
Category :
Languages : en
Pages : 528
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 528
Book Description
A Concise System of Mathematics ... With many important additions and improvements ... by J. Trotter ... Tenth edition, revised
Author: Alexander INGRAM (of Leith.)
Publisher:
ISBN:
Category :
Languages : en
Pages : 526
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 526
Book Description
A Concise System of Mathematics ... With ... additions and improvements ... by J. Trotter ... Seventh edition
Author: Alexander INGRAM (of Leith.)
Publisher:
ISBN:
Category :
Languages : en
Pages : 528
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 528
Book Description
A Concise History of Mathematics
Author: Dirk Jan Struik
Publisher: Courier Corporation
ISBN: 9780486602554
Category : Mathematics
Languages : en
Pages : 260
Book Description
This compact, well-written history covers major mathematical ideas and techniques from the ancient Near East to 20th-century computer theory, surveying the works of Archimedes, Pascal, Gauss, Hilbert, and many others. "The author's ability as a first-class historian as well as an able mathematician has enabled him to produce a work which is unquestionably one of the best." — Nature.
Publisher: Courier Corporation
ISBN: 9780486602554
Category : Mathematics
Languages : en
Pages : 260
Book Description
This compact, well-written history covers major mathematical ideas and techniques from the ancient Near East to 20th-century computer theory, surveying the works of Archimedes, Pascal, Gauss, Hilbert, and many others. "The author's ability as a first-class historian as well as an able mathematician has enabled him to produce a work which is unquestionably one of the best." — Nature.
A Concise Introduction to the Theory of Numbers
Author: Alan Baker
Publisher: Cambridge University Press
ISBN: 9780521286541
Category : Mathematics
Languages : en
Pages : 116
Book Description
In this book, Professor Baker describes the rudiments of number theory in a concise, simple and direct manner.
Publisher: Cambridge University Press
ISBN: 9780521286541
Category : Mathematics
Languages : en
Pages : 116
Book Description
In this book, Professor Baker describes the rudiments of number theory in a concise, simple and direct manner.
Mathematics: A Concise History and Philosophy
Author: W.S. Anglin
Publisher: Springer Science & Business Media
ISBN: 1461208750
Category : Science
Languages : en
Pages : 253
Book Description
This is a concise introductory textbook for a one-semester (40-class) course in the history and philosophy of mathematics. It is written for mathemat ics majors, philosophy students, history of science students, and (future) secondary school mathematics teachers. The only prerequisite is a solid command of precalculus mathematics. On the one hand, this book is designed to help mathematics majors ac quire a philosophical and cultural understanding of their subject by means of doing actual mathematical problems from different eras. On the other hand, it is designed to help philosophy, history, and education students come to a deeper understanding of the mathematical side of culture by means of writing short essays. The way I myself teach the material, stu dents are given a choice between mathematical assignments, and more his torical or philosophical assignments. (Some sample assignments and tests are found in an appendix to this book. ) This book differs from standard textbooks in several ways. First, it is shorter, and thus more accessible to students who have trouble coping with vast amounts of reading. Second, there are many detailed explanations of the important mathematical procedures actually used by famous mathe maticians, giving more mathematically talented students a greater oppor tunity to learn the history and philosophy by way of problem solving.
Publisher: Springer Science & Business Media
ISBN: 1461208750
Category : Science
Languages : en
Pages : 253
Book Description
This is a concise introductory textbook for a one-semester (40-class) course in the history and philosophy of mathematics. It is written for mathemat ics majors, philosophy students, history of science students, and (future) secondary school mathematics teachers. The only prerequisite is a solid command of precalculus mathematics. On the one hand, this book is designed to help mathematics majors ac quire a philosophical and cultural understanding of their subject by means of doing actual mathematical problems from different eras. On the other hand, it is designed to help philosophy, history, and education students come to a deeper understanding of the mathematical side of culture by means of writing short essays. The way I myself teach the material, stu dents are given a choice between mathematical assignments, and more his torical or philosophical assignments. (Some sample assignments and tests are found in an appendix to this book. ) This book differs from standard textbooks in several ways. First, it is shorter, and thus more accessible to students who have trouble coping with vast amounts of reading. Second, there are many detailed explanations of the important mathematical procedures actually used by famous mathe maticians, giving more mathematically talented students a greater oppor tunity to learn the history and philosophy by way of problem solving.
A Concise Handbook of Mathematics, Physics, and Engineering Sciences
Author: Andrei D. Polyanin
Publisher: CRC Press
ISBN: 1439806403
Category : Mathematics
Languages : en
Pages : 1080
Book Description
A Concise Handbook of Mathematics, Physics, and Engineering Sciences takes a practical approach to the basic notions, formulas, equations, problems, theorems, methods, and laws that most frequently occur in scientific and engineering applications and university education. The authors pay special attention to issues that many engineers and students
Publisher: CRC Press
ISBN: 1439806403
Category : Mathematics
Languages : en
Pages : 1080
Book Description
A Concise Handbook of Mathematics, Physics, and Engineering Sciences takes a practical approach to the basic notions, formulas, equations, problems, theorems, methods, and laws that most frequently occur in scientific and engineering applications and university education. The authors pay special attention to issues that many engineers and students
Ordinary Differential Equations and Dynamical Systems
Author: Gerald Teschl
Publisher: American Mathematical Society
ISBN: 147047641X
Category : Mathematics
Languages : en
Pages : 370
Book Description
This book provides a self-contained introduction to ordinary differential equations and dynamical systems suitable for beginning graduate students. The first part begins with some simple examples of explicitly solvable equations and a first glance at qualitative methods. Then the fundamental results concerning the initial value problem are proved: existence, uniqueness, extensibility, dependence on initial conditions. Furthermore, linear equations are considered, including the Floquet theorem, and some perturbation results. As somewhat independent topics, the Frobenius method for linear equations in the complex domain is established and Sturm–Liouville boundary value problems, including oscillation theory, are investigated. The second part introduces the concept of a dynamical system. The Poincaré–Bendixson theorem is proved, and several examples of planar systems from classical mechanics, ecology, and electrical engineering are investigated. Moreover, attractors, Hamiltonian systems, the KAM theorem, and periodic solutions are discussed. Finally, stability is studied, including the stable manifold and the Hartman–Grobman theorem for both continuous and discrete systems. The third part introduces chaos, beginning with the basics for iterated interval maps and ending with the Smale–Birkhoff theorem and the Melnikov method for homoclinic orbits. The text contains almost three hundred exercises. Additionally, the use of mathematical software systems is incorporated throughout, showing how they can help in the study of differential equations.
Publisher: American Mathematical Society
ISBN: 147047641X
Category : Mathematics
Languages : en
Pages : 370
Book Description
This book provides a self-contained introduction to ordinary differential equations and dynamical systems suitable for beginning graduate students. The first part begins with some simple examples of explicitly solvable equations and a first glance at qualitative methods. Then the fundamental results concerning the initial value problem are proved: existence, uniqueness, extensibility, dependence on initial conditions. Furthermore, linear equations are considered, including the Floquet theorem, and some perturbation results. As somewhat independent topics, the Frobenius method for linear equations in the complex domain is established and Sturm–Liouville boundary value problems, including oscillation theory, are investigated. The second part introduces the concept of a dynamical system. The Poincaré–Bendixson theorem is proved, and several examples of planar systems from classical mechanics, ecology, and electrical engineering are investigated. Moreover, attractors, Hamiltonian systems, the KAM theorem, and periodic solutions are discussed. Finally, stability is studied, including the stable manifold and the Hartman–Grobman theorem for both continuous and discrete systems. The third part introduces chaos, beginning with the basics for iterated interval maps and ending with the Smale–Birkhoff theorem and the Melnikov method for homoclinic orbits. The text contains almost three hundred exercises. Additionally, the use of mathematical software systems is incorporated throughout, showing how they can help in the study of differential equations.