Author: Martin Liebeck
Publisher: CRC Press
ISBN: 1315360713
Category : Mathematics
Languages : en
Pages : 235
Book Description
Accessible to all students with a sound background in high school mathematics, A Concise Introduction to Pure Mathematics, Fourth Edition presents some of the most fundamental and beautiful ideas in pure mathematics. It covers not only standard material but also many interesting topics not usually encountered at this level, such as the theory of solving cubic equations; Euler’s formula for the numbers of corners, edges, and faces of a solid object and the five Platonic solids; the use of prime numbers to encode and decode secret information; the theory of how to compare the sizes of two infinite sets; and the rigorous theory of limits and continuous functions. New to the Fourth Edition Two new chapters that serve as an introduction to abstract algebra via the theory of groups, covering abstract reasoning as well as many examples and applications New material on inequalities, counting methods, the inclusion-exclusion principle, and Euler’s phi function Numerous new exercises, with solutions to the odd-numbered ones Through careful explanations and examples, this popular textbook illustrates the power and beauty of basic mathematical concepts in number theory, discrete mathematics, analysis, and abstract algebra. Written in a rigorous yet accessible style, it continues to provide a robust bridge between high school and higher-level mathematics, enabling students to study more advanced courses in abstract algebra and analysis.
A Concise Introduction to Pure Mathematics
Author: Martin Liebeck
Publisher: CRC Press
ISBN: 1315360713
Category : Mathematics
Languages : en
Pages : 235
Book Description
Accessible to all students with a sound background in high school mathematics, A Concise Introduction to Pure Mathematics, Fourth Edition presents some of the most fundamental and beautiful ideas in pure mathematics. It covers not only standard material but also many interesting topics not usually encountered at this level, such as the theory of solving cubic equations; Euler’s formula for the numbers of corners, edges, and faces of a solid object and the five Platonic solids; the use of prime numbers to encode and decode secret information; the theory of how to compare the sizes of two infinite sets; and the rigorous theory of limits and continuous functions. New to the Fourth Edition Two new chapters that serve as an introduction to abstract algebra via the theory of groups, covering abstract reasoning as well as many examples and applications New material on inequalities, counting methods, the inclusion-exclusion principle, and Euler’s phi function Numerous new exercises, with solutions to the odd-numbered ones Through careful explanations and examples, this popular textbook illustrates the power and beauty of basic mathematical concepts in number theory, discrete mathematics, analysis, and abstract algebra. Written in a rigorous yet accessible style, it continues to provide a robust bridge between high school and higher-level mathematics, enabling students to study more advanced courses in abstract algebra and analysis.
Publisher: CRC Press
ISBN: 1315360713
Category : Mathematics
Languages : en
Pages : 235
Book Description
Accessible to all students with a sound background in high school mathematics, A Concise Introduction to Pure Mathematics, Fourth Edition presents some of the most fundamental and beautiful ideas in pure mathematics. It covers not only standard material but also many interesting topics not usually encountered at this level, such as the theory of solving cubic equations; Euler’s formula for the numbers of corners, edges, and faces of a solid object and the five Platonic solids; the use of prime numbers to encode and decode secret information; the theory of how to compare the sizes of two infinite sets; and the rigorous theory of limits and continuous functions. New to the Fourth Edition Two new chapters that serve as an introduction to abstract algebra via the theory of groups, covering abstract reasoning as well as many examples and applications New material on inequalities, counting methods, the inclusion-exclusion principle, and Euler’s phi function Numerous new exercises, with solutions to the odd-numbered ones Through careful explanations and examples, this popular textbook illustrates the power and beauty of basic mathematical concepts in number theory, discrete mathematics, analysis, and abstract algebra. Written in a rigorous yet accessible style, it continues to provide a robust bridge between high school and higher-level mathematics, enabling students to study more advanced courses in abstract algebra and analysis.
A Concise Introduction to Pure Mathematics, Second Edition
Author: Martin Liebeck
Publisher: CRC Press
ISBN: 9781584885474
Category : Mathematics
Languages : en
Pages : 230
Book Description
A Concise Introduction to Pure Mathematics, Second Edition provides a robust bridge between high school and university mathematics, expanding upon basic topics in ways that will interest first-year students in mathematics and related fields and stimulate further study. Divided into 22 short chapters, this textbook offers a selection of exercises ranging from routine calculations to quite challenging problems. The author discusses real and complex numbers and explains how these concepts are applied in solving natural problems. He introduces topics in analysis, geometry, number theory, and combinatorics. What's New in the Second Edition: Contains extra material concerning prime numbers, forming the basis for data encryption Explores "Secret Codes" - one of today's most spectacular applications of pure mathematics Discusses Permutations and their importance in many topics in discrete mathematics The textbook allows for the design of courses with various points of emphasis, because it can be divided into four fairly independent sections related to: an introduction to number systems and analysis; theory of the integers; an introduction to discrete mathematics; and functions, relations, and countability.
Publisher: CRC Press
ISBN: 9781584885474
Category : Mathematics
Languages : en
Pages : 230
Book Description
A Concise Introduction to Pure Mathematics, Second Edition provides a robust bridge between high school and university mathematics, expanding upon basic topics in ways that will interest first-year students in mathematics and related fields and stimulate further study. Divided into 22 short chapters, this textbook offers a selection of exercises ranging from routine calculations to quite challenging problems. The author discusses real and complex numbers and explains how these concepts are applied in solving natural problems. He introduces topics in analysis, geometry, number theory, and combinatorics. What's New in the Second Edition: Contains extra material concerning prime numbers, forming the basis for data encryption Explores "Secret Codes" - one of today's most spectacular applications of pure mathematics Discusses Permutations and their importance in many topics in discrete mathematics The textbook allows for the design of courses with various points of emphasis, because it can be divided into four fairly independent sections related to: an introduction to number systems and analysis; theory of the integers; an introduction to discrete mathematics; and functions, relations, and countability.
A Concise Introduction to Pure Mathematics, Third Edition
Author: Martin Liebeck
Publisher: CRC Press
ISBN: 1439835985
Category : Mathematics
Languages : en
Pages : 266
Book Description
Accessible to all students with a sound background in high school mathematics, A Concise Introduction to Pure Mathematics, Third Edition presents some of the most fundamental and beautiful ideas in pure mathematics. It covers not only standard material but also many interesting topics not usually encountered at this level, such as the theory of solving cubic equations, the use of Euler’s formula to study the five Platonic solids, the use of prime numbers to encode and decode secret information, and the theory of how to compare the sizes of two infinite sets. New to the Third Edition The third edition of this popular text contains three new chapters that provide an introduction to mathematical analysis. These new chapters introduce the ideas of limits of sequences and continuous functions as well as several interesting applications, such as the use of the intermediate value theorem to prove the existence of nth roots. This edition also includes solutions to all of the odd-numbered exercises. By carefully explaining various topics in analysis, geometry, number theory, and combinatorics, this textbook illustrates the power and beauty of basic mathematical concepts. Written in a rigorous yet accessible style, it continues to provide a robust bridge between high school and higher level mathematics, enabling students to study further courses in abstract algebra and analysis.
Publisher: CRC Press
ISBN: 1439835985
Category : Mathematics
Languages : en
Pages : 266
Book Description
Accessible to all students with a sound background in high school mathematics, A Concise Introduction to Pure Mathematics, Third Edition presents some of the most fundamental and beautiful ideas in pure mathematics. It covers not only standard material but also many interesting topics not usually encountered at this level, such as the theory of solving cubic equations, the use of Euler’s formula to study the five Platonic solids, the use of prime numbers to encode and decode secret information, and the theory of how to compare the sizes of two infinite sets. New to the Third Edition The third edition of this popular text contains three new chapters that provide an introduction to mathematical analysis. These new chapters introduce the ideas of limits of sequences and continuous functions as well as several interesting applications, such as the use of the intermediate value theorem to prove the existence of nth roots. This edition also includes solutions to all of the odd-numbered exercises. By carefully explaining various topics in analysis, geometry, number theory, and combinatorics, this textbook illustrates the power and beauty of basic mathematical concepts. Written in a rigorous yet accessible style, it continues to provide a robust bridge between high school and higher level mathematics, enabling students to study further courses in abstract algebra and analysis.
Problem-Solving Strategies
Author: Arthur Engel
Publisher: Springer Science & Business Media
ISBN: 0387226419
Category : Mathematics
Languages : en
Pages : 404
Book Description
A unique collection of competition problems from over twenty major national and international mathematical competitions for high school students. Written for trainers and participants of contests of all levels up to the highest level, this will appeal to high school teachers conducting a mathematics club who need a range of simple to complex problems and to those instructors wishing to pose a "problem of the week", thus bringing a creative atmosphere into the classrooms. Equally, this is a must-have for individuals interested in solving difficult and challenging problems. Each chapter starts with typical examples illustrating the central concepts and is followed by a number of carefully selected problems and their solutions. Most of the solutions are complete, but some merely point to the road leading to the final solution. In addition to being a valuable resource of mathematical problems and solution strategies, this is the most complete training book on the market.
Publisher: Springer Science & Business Media
ISBN: 0387226419
Category : Mathematics
Languages : en
Pages : 404
Book Description
A unique collection of competition problems from over twenty major national and international mathematical competitions for high school students. Written for trainers and participants of contests of all levels up to the highest level, this will appeal to high school teachers conducting a mathematics club who need a range of simple to complex problems and to those instructors wishing to pose a "problem of the week", thus bringing a creative atmosphere into the classrooms. Equally, this is a must-have for individuals interested in solving difficult and challenging problems. Each chapter starts with typical examples illustrating the central concepts and is followed by a number of carefully selected problems and their solutions. Most of the solutions are complete, but some merely point to the road leading to the final solution. In addition to being a valuable resource of mathematical problems and solution strategies, this is the most complete training book on the market.
Mathematical Analysis
Author: Bernd S. W. Schröder
Publisher: John Wiley & Sons
ISBN: 9780470226766
Category : Mathematics
Languages : en
Pages : 584
Book Description
A self-contained introduction to the fundamentals of mathematical analysis Mathematical Analysis: A Concise Introduction presents the foundations of analysis and illustrates its role in mathematics. By focusing on the essentials, reinforcing learning through exercises, and featuring a unique "learn by doing" approach, the book develops the reader's proof writing skills and establishes fundamental comprehension of analysis that is essential for further exploration of pure and applied mathematics. This book is directly applicable to areas such as differential equations, probability theory, numerical analysis, differential geometry, and functional analysis. Mathematical Analysis is composed of three parts: ?Part One presents the analysis of functions of one variable, including sequences, continuity, differentiation, Riemann integration, series, and the Lebesgue integral. A detailed explanation of proof writing is provided with specific attention devoted to standard proof techniques. To facilitate an efficient transition to more abstract settings, the results for single variable functions are proved using methods that translate to metric spaces. ?Part Two explores the more abstract counterparts of the concepts outlined earlier in the text. The reader is introduced to the fundamental spaces of analysis, including Lp spaces, and the book successfully details how appropriate definitions of integration, continuity, and differentiation lead to a powerful and widely applicable foundation for further study of applied mathematics. The interrelation between measure theory, topology, and differentiation is then examined in the proof of the Multidimensional Substitution Formula. Further areas of coverage in this section include manifolds, Stokes' Theorem, Hilbert spaces, the convergence of Fourier series, and Riesz' Representation Theorem. ?Part Three provides an overview of the motivations for analysis as well as its applications in various subjects. A special focus on ordinary and partial differential equations presents some theoretical and practical challenges that exist in these areas. Topical coverage includes Navier-Stokes equations and the finite element method. Mathematical Analysis: A Concise Introduction includes an extensive index and over 900 exercises ranging in level of difficulty, from conceptual questions and adaptations of proofs to proofs with and without hints. These opportunities for reinforcement, along with the overall concise and well-organized treatment of analysis, make this book essential for readers in upper-undergraduate or beginning graduate mathematics courses who would like to build a solid foundation in analysis for further work in all analysis-based branches of mathematics.
Publisher: John Wiley & Sons
ISBN: 9780470226766
Category : Mathematics
Languages : en
Pages : 584
Book Description
A self-contained introduction to the fundamentals of mathematical analysis Mathematical Analysis: A Concise Introduction presents the foundations of analysis and illustrates its role in mathematics. By focusing on the essentials, reinforcing learning through exercises, and featuring a unique "learn by doing" approach, the book develops the reader's proof writing skills and establishes fundamental comprehension of analysis that is essential for further exploration of pure and applied mathematics. This book is directly applicable to areas such as differential equations, probability theory, numerical analysis, differential geometry, and functional analysis. Mathematical Analysis is composed of three parts: ?Part One presents the analysis of functions of one variable, including sequences, continuity, differentiation, Riemann integration, series, and the Lebesgue integral. A detailed explanation of proof writing is provided with specific attention devoted to standard proof techniques. To facilitate an efficient transition to more abstract settings, the results for single variable functions are proved using methods that translate to metric spaces. ?Part Two explores the more abstract counterparts of the concepts outlined earlier in the text. The reader is introduced to the fundamental spaces of analysis, including Lp spaces, and the book successfully details how appropriate definitions of integration, continuity, and differentiation lead to a powerful and widely applicable foundation for further study of applied mathematics. The interrelation between measure theory, topology, and differentiation is then examined in the proof of the Multidimensional Substitution Formula. Further areas of coverage in this section include manifolds, Stokes' Theorem, Hilbert spaces, the convergence of Fourier series, and Riesz' Representation Theorem. ?Part Three provides an overview of the motivations for analysis as well as its applications in various subjects. A special focus on ordinary and partial differential equations presents some theoretical and practical challenges that exist in these areas. Topical coverage includes Navier-Stokes equations and the finite element method. Mathematical Analysis: A Concise Introduction includes an extensive index and over 900 exercises ranging in level of difficulty, from conceptual questions and adaptations of proofs to proofs with and without hints. These opportunities for reinforcement, along with the overall concise and well-organized treatment of analysis, make this book essential for readers in upper-undergraduate or beginning graduate mathematics courses who would like to build a solid foundation in analysis for further work in all analysis-based branches of mathematics.
Introduction to the Mathematics of Operations Research with Mathematica®
Author: Kevin J. Hastings
Publisher: CRC Press
ISBN: 142001739X
Category : Business & Economics
Languages : en
Pages : 588
Book Description
The breadth of information about operations research and the overwhelming size of previous sources on the subject make it a difficult topic for non-specialists to grasp. Fortunately, Introduction to the Mathematics of Operations Research with Mathematica®, Second Edition delivers a concise analysis that benefits professionals in operations research and related fields in statistics, management, applied mathematics, and finance. The second edition retains the character of the earlier version, while incorporating developments in the sphere of operations research, technology, and mathematics pedagogy. Covering the topics crucial to applied mathematics, it examines graph theory, linear programming, stochastic processes, and dynamic programming. This self-contained text includes an accompanying electronic version and a package of useful commands. The electronic version is in the form of Mathematica notebooks, enabling you to devise, edit, and execute/reexecute commands, increasing your level of comprehension and problem-solving. Mathematica sharpens the impact of this book by allowing you to conveniently carry out graph algorithms, experiment with large powers of adjacency matrices in order to check the path counting theorem and Markov chains, construct feasible regions of linear programming problems, and use the "dictionary" method to solve these problems. You can also create simulators for Markov chains, Poisson processes, and Brownian motions in Mathematica, increasing your understanding of the defining conditions of these processes. Among many other benefits, Mathematica also promotes recursive solutions for problems related to first passage times and absorption probabilities.
Publisher: CRC Press
ISBN: 142001739X
Category : Business & Economics
Languages : en
Pages : 588
Book Description
The breadth of information about operations research and the overwhelming size of previous sources on the subject make it a difficult topic for non-specialists to grasp. Fortunately, Introduction to the Mathematics of Operations Research with Mathematica®, Second Edition delivers a concise analysis that benefits professionals in operations research and related fields in statistics, management, applied mathematics, and finance. The second edition retains the character of the earlier version, while incorporating developments in the sphere of operations research, technology, and mathematics pedagogy. Covering the topics crucial to applied mathematics, it examines graph theory, linear programming, stochastic processes, and dynamic programming. This self-contained text includes an accompanying electronic version and a package of useful commands. The electronic version is in the form of Mathematica notebooks, enabling you to devise, edit, and execute/reexecute commands, increasing your level of comprehension and problem-solving. Mathematica sharpens the impact of this book by allowing you to conveniently carry out graph algorithms, experiment with large powers of adjacency matrices in order to check the path counting theorem and Markov chains, construct feasible regions of linear programming problems, and use the "dictionary" method to solve these problems. You can also create simulators for Markov chains, Poisson processes, and Brownian motions in Mathematica, increasing your understanding of the defining conditions of these processes. Among many other benefits, Mathematica also promotes recursive solutions for problems related to first passage times and absorption probabilities.
An Introduction to Mathematical Reasoning
Author: Peter J. Eccles
Publisher: Cambridge University Press
ISBN: 1139632566
Category : Mathematics
Languages : en
Pages : 364
Book Description
This book eases students into the rigors of university mathematics. The emphasis is on understanding and constructing proofs and writing clear mathematics. The author achieves this by exploring set theory, combinatorics, and number theory, topics that include many fundamental ideas and may not be a part of a young mathematician's toolkit. This material illustrates how familiar ideas can be formulated rigorously, provides examples demonstrating a wide range of basic methods of proof, and includes some of the all-time-great classic proofs. The book presents mathematics as a continually developing subject. Material meeting the needs of readers from a wide range of backgrounds is included. The over 250 problems include questions to interest and challenge the most able student but also plenty of routine exercises to help familiarize the reader with the basic ideas.
Publisher: Cambridge University Press
ISBN: 1139632566
Category : Mathematics
Languages : en
Pages : 364
Book Description
This book eases students into the rigors of university mathematics. The emphasis is on understanding and constructing proofs and writing clear mathematics. The author achieves this by exploring set theory, combinatorics, and number theory, topics that include many fundamental ideas and may not be a part of a young mathematician's toolkit. This material illustrates how familiar ideas can be formulated rigorously, provides examples demonstrating a wide range of basic methods of proof, and includes some of the all-time-great classic proofs. The book presents mathematics as a continually developing subject. Material meeting the needs of readers from a wide range of backgrounds is included. The over 250 problems include questions to interest and challenge the most able student but also plenty of routine exercises to help familiarize the reader with the basic ideas.
A Concise Introduction to Pure Mathematics
Author: Martin Liebeck
Publisher: CRC Press
ISBN: 1315363283
Category : Mathematics
Languages : en
Pages : 320
Book Description
Accessible to all students with a sound background in high school mathematics, A Concise Introduction to Pure Mathematics, Fourth Edition presents some of the most fundamental and beautiful ideas in pure mathematics. It covers not only standard material but also many interesting topics not usually encountered at this level, such as the theory of solving cubic equations; Euler’s formula for the numbers of corners, edges, and faces of a solid object and the five Platonic solids; the use of prime numbers to encode and decode secret information; the theory of how to compare the sizes of two infinite sets; and the rigorous theory of limits and continuous functions. New to the Fourth Edition Two new chapters that serve as an introduction to abstract algebra via the theory of groups, covering abstract reasoning as well as many examples and applications New material on inequalities, counting methods, the inclusion-exclusion principle, and Euler’s phi function Numerous new exercises, with solutions to the odd-numbered ones Through careful explanations and examples, this popular textbook illustrates the power and beauty of basic mathematical concepts in number theory, discrete mathematics, analysis, and abstract algebra. Written in a rigorous yet accessible style, it continues to provide a robust bridge between high school and higher-level mathematics, enabling students to study more advanced courses in abstract algebra and analysis.
Publisher: CRC Press
ISBN: 1315363283
Category : Mathematics
Languages : en
Pages : 320
Book Description
Accessible to all students with a sound background in high school mathematics, A Concise Introduction to Pure Mathematics, Fourth Edition presents some of the most fundamental and beautiful ideas in pure mathematics. It covers not only standard material but also many interesting topics not usually encountered at this level, such as the theory of solving cubic equations; Euler’s formula for the numbers of corners, edges, and faces of a solid object and the five Platonic solids; the use of prime numbers to encode and decode secret information; the theory of how to compare the sizes of two infinite sets; and the rigorous theory of limits and continuous functions. New to the Fourth Edition Two new chapters that serve as an introduction to abstract algebra via the theory of groups, covering abstract reasoning as well as many examples and applications New material on inequalities, counting methods, the inclusion-exclusion principle, and Euler’s phi function Numerous new exercises, with solutions to the odd-numbered ones Through careful explanations and examples, this popular textbook illustrates the power and beauty of basic mathematical concepts in number theory, discrete mathematics, analysis, and abstract algebra. Written in a rigorous yet accessible style, it continues to provide a robust bridge between high school and higher-level mathematics, enabling students to study more advanced courses in abstract algebra and analysis.
Pure Mathematics for Beginners
Author: Steve Warner
Publisher:
ISBN: 9780999811757
Category :
Languages : en
Pages : 262
Book Description
Pure Mathematics for Beginners Pure Mathematics for Beginners consists of a series of lessons in Logic, Set Theory, Abstract Algebra, Number Theory, Real Analysis, Topology, Complex Analysis, and Linear Algebra. The 16 lessons in this book cover basic through intermediate material from each of these 8 topics. In addition, all the proofwriting skills that are essential for advanced study in mathematics are covered and reviewed extensively. Pure Mathematics for Beginners is perfect for professors teaching an introductory college course in higher mathematics high school teachers working with advanced math students students wishing to see the type of mathematics they would be exposed to as a math major. The material in this pure math book includes: 16 lessons in 8 subject areas. A problem set after each lesson arranged by difficulty level. A complete solution guide is included as a downloadable PDF file. Pure Math Book Table Of Contents (Selected) Here's a selection from the table of contents: Introduction Lesson 1 - Logic: Statements and Truth Lesson 2 - Set Theory: Sets and Subsets Lesson 3 - Abstract Algebra: Semigroups, Monoids, and Groups Lesson 4 - Number Theory: Ring of Integers Lesson 5 - Real Analysis: The Complete Ordered Field of Reals Lesson 6 - Topology: The Topology of R Lesson 7 - Complex Analysis: The field of Complex Numbers Lesson 8 - Linear Algebra: Vector Spaces Lesson 9 - Logic: Logical Arguments Lesson 10 - Set Theory: Relations and Functions Lesson 11 - Abstract Algebra: Structures and Homomorphisms Lesson 12 - Number Theory: Primes, GCD, and LCM Lesson 13 - Real Analysis: Limits and Continuity Lesson 14 - Topology: Spaces and Homeomorphisms Lesson 15 - Complex Analysis: Complex Valued Functions Lesson 16 - Linear Algebra: Linear Transformations
Publisher:
ISBN: 9780999811757
Category :
Languages : en
Pages : 262
Book Description
Pure Mathematics for Beginners Pure Mathematics for Beginners consists of a series of lessons in Logic, Set Theory, Abstract Algebra, Number Theory, Real Analysis, Topology, Complex Analysis, and Linear Algebra. The 16 lessons in this book cover basic through intermediate material from each of these 8 topics. In addition, all the proofwriting skills that are essential for advanced study in mathematics are covered and reviewed extensively. Pure Mathematics for Beginners is perfect for professors teaching an introductory college course in higher mathematics high school teachers working with advanced math students students wishing to see the type of mathematics they would be exposed to as a math major. The material in this pure math book includes: 16 lessons in 8 subject areas. A problem set after each lesson arranged by difficulty level. A complete solution guide is included as a downloadable PDF file. Pure Math Book Table Of Contents (Selected) Here's a selection from the table of contents: Introduction Lesson 1 - Logic: Statements and Truth Lesson 2 - Set Theory: Sets and Subsets Lesson 3 - Abstract Algebra: Semigroups, Monoids, and Groups Lesson 4 - Number Theory: Ring of Integers Lesson 5 - Real Analysis: The Complete Ordered Field of Reals Lesson 6 - Topology: The Topology of R Lesson 7 - Complex Analysis: The field of Complex Numbers Lesson 8 - Linear Algebra: Vector Spaces Lesson 9 - Logic: Logical Arguments Lesson 10 - Set Theory: Relations and Functions Lesson 11 - Abstract Algebra: Structures and Homomorphisms Lesson 12 - Number Theory: Primes, GCD, and LCM Lesson 13 - Real Analysis: Limits and Continuity Lesson 14 - Topology: Spaces and Homeomorphisms Lesson 15 - Complex Analysis: Complex Valued Functions Lesson 16 - Linear Algebra: Linear Transformations
Introduction to Graph Theory
Author: Richard J. Trudeau
Publisher: Courier Corporation
ISBN: 0486318664
Category : Mathematics
Languages : en
Pages : 242
Book Description
Aimed at "the mathematically traumatized," this text offers nontechnical coverage of graph theory, with exercises. Discusses planar graphs, Euler's formula, Platonic graphs, coloring, the genus of a graph, Euler walks, Hamilton walks, more. 1976 edition.
Publisher: Courier Corporation
ISBN: 0486318664
Category : Mathematics
Languages : en
Pages : 242
Book Description
Aimed at "the mathematically traumatized," this text offers nontechnical coverage of graph theory, with exercises. Discusses planar graphs, Euler's formula, Platonic graphs, coloring, the genus of a graph, Euler walks, Hamilton walks, more. 1976 edition.