Author: Gail Baura
Publisher: Springer Nature
ISBN: 3031016254
Category : Technology & Engineering
Languages : en
Pages : 93
Book Description
A medical device is an apparatus that uses engineering and scientific principles to interface to physiology and diagnose or treat a disease. In this Lecture, we specifically consider thosemedical devices that are computer based, and are therefore referred to as medical instruments. Further, the medical instruments we discuss are those that incorporate system theory into their designs. We divide these types of instruments into those that provide continuous observation and those that provide a single snapshot of health information. These instruments are termed patient monitoring devices and diagnostic devices, respectively.Within this Lecture, we highlight some of the common system theory techniques that are part of the toolkit of medical device engineers in industry. These techniques include the pseudorandom binary sequence, adaptive filtering, wavelet transforms, the autoregressive moving average model with exogenous input, artificial neural networks, fuzzy models, and fuzzy control. Because the clinical usage requirements for patient monitoring and diagnostic devices are so high, system theory is the preferred substitute for heuristic, empirical processing during noise artifact minimization and classification. Table of Contents: Preface / Medical Devices / System Theory / Patient Monitoring Devices / Diagnostic Devices / Conclusion / Author Biography
A Biosystems Approach to Industrial Patient Monitoring and Diagnostic Devices
Author: Gail Baura
Publisher: Springer Nature
ISBN: 3031016254
Category : Technology & Engineering
Languages : en
Pages : 93
Book Description
A medical device is an apparatus that uses engineering and scientific principles to interface to physiology and diagnose or treat a disease. In this Lecture, we specifically consider thosemedical devices that are computer based, and are therefore referred to as medical instruments. Further, the medical instruments we discuss are those that incorporate system theory into their designs. We divide these types of instruments into those that provide continuous observation and those that provide a single snapshot of health information. These instruments are termed patient monitoring devices and diagnostic devices, respectively.Within this Lecture, we highlight some of the common system theory techniques that are part of the toolkit of medical device engineers in industry. These techniques include the pseudorandom binary sequence, adaptive filtering, wavelet transforms, the autoregressive moving average model with exogenous input, artificial neural networks, fuzzy models, and fuzzy control. Because the clinical usage requirements for patient monitoring and diagnostic devices are so high, system theory is the preferred substitute for heuristic, empirical processing during noise artifact minimization and classification. Table of Contents: Preface / Medical Devices / System Theory / Patient Monitoring Devices / Diagnostic Devices / Conclusion / Author Biography
Publisher: Springer Nature
ISBN: 3031016254
Category : Technology & Engineering
Languages : en
Pages : 93
Book Description
A medical device is an apparatus that uses engineering and scientific principles to interface to physiology and diagnose or treat a disease. In this Lecture, we specifically consider thosemedical devices that are computer based, and are therefore referred to as medical instruments. Further, the medical instruments we discuss are those that incorporate system theory into their designs. We divide these types of instruments into those that provide continuous observation and those that provide a single snapshot of health information. These instruments are termed patient monitoring devices and diagnostic devices, respectively.Within this Lecture, we highlight some of the common system theory techniques that are part of the toolkit of medical device engineers in industry. These techniques include the pseudorandom binary sequence, adaptive filtering, wavelet transforms, the autoregressive moving average model with exogenous input, artificial neural networks, fuzzy models, and fuzzy control. Because the clinical usage requirements for patient monitoring and diagnostic devices are so high, system theory is the preferred substitute for heuristic, empirical processing during noise artifact minimization and classification. Table of Contents: Preface / Medical Devices / System Theory / Patient Monitoring Devices / Diagnostic Devices / Conclusion / Author Biography
Medical Device Technologies
Author: Gail D. Baura
Publisher: Academic Press
ISBN: 012374976X
Category : Medical
Languages : en
Pages : 529
Book Description
Medical Device Technologies introduces undergraduate engineering students to commonly manufactured medical devices. It is the first textbook that discusses both electrical and mechanical medical devices. The first 20 chapters are medical device technology chapters; the remaining eight chapters focus on medical device laboratory experiments. Each medical device chapter begins with an exposition of appropriate physiology, mathematical modeling or biocompatibility issues, and clinical need. A device system description and system diagram provide details on technology function and administration of diagnosis and/or therapy. The systems approach lets students quickly identify the relationships between devices. Device key features are based on five applicable consensus standard requirements from organizations such as ISO and the Association for the Advancement of Medical Instrumentation (AAMI). The medical devices discussed are Nobel Prize or Lasker Clinical Prize winners, vital signs devices, and devices in high industry growth areas Three significant Food and Drug Administration (FDA) recall case studies which have impacted FDA medical device regulation are included in appropriate device chapters Exercises at the end of each chapter include traditional homework problems, analysis exercises, and four questions from assigned primary literature Eight laboratory experiments are detailed that provide hands-on reinforcement of device concepts
Publisher: Academic Press
ISBN: 012374976X
Category : Medical
Languages : en
Pages : 529
Book Description
Medical Device Technologies introduces undergraduate engineering students to commonly manufactured medical devices. It is the first textbook that discusses both electrical and mechanical medical devices. The first 20 chapters are medical device technology chapters; the remaining eight chapters focus on medical device laboratory experiments. Each medical device chapter begins with an exposition of appropriate physiology, mathematical modeling or biocompatibility issues, and clinical need. A device system description and system diagram provide details on technology function and administration of diagnosis and/or therapy. The systems approach lets students quickly identify the relationships between devices. Device key features are based on five applicable consensus standard requirements from organizations such as ISO and the Association for the Advancement of Medical Instrumentation (AAMI). The medical devices discussed are Nobel Prize or Lasker Clinical Prize winners, vital signs devices, and devices in high industry growth areas Three significant Food and Drug Administration (FDA) recall case studies which have impacted FDA medical device regulation are included in appropriate device chapters Exercises at the end of each chapter include traditional homework problems, analysis exercises, and four questions from assigned primary literature Eight laboratory experiments are detailed that provide hands-on reinforcement of device concepts
The Graph Theoretical Approach in Brain Functional Networks
Author: Fabrizio Fallani
Publisher: Springer Nature
ISBN: 3031016440
Category : Technology & Engineering
Languages : en
Pages : 84
Book Description
The present book illustrates the theoretical aspects of several methodologies related to the possibility of i) enhancing the poor spatial information of the electroencephalographic (EEG) activity on the scalp and giving a measure of the electrical activity on the cortical surface. ii) estimating the directional influences between any given pair of channels in a multivariate dataset. iii) modeling the brain networks as graphs. The possible applications are discussed in three different experimental designs regarding i) the study of pathological conditions during a motor task, ii) the study of memory processes during a cognitive task iii) the study of the instantaneous dynamics throughout the evolution of a motor task in physiological conditions. The main outcome from all those studies indicates clearly that the performance of cognitive and motor tasks as well as the presence of neural diseases can affect the brain network topology. This evidence gives the power of reflecting cerebral "states" or "traits" to the mathematical indexes derived from the graph theory. In particular, the observed structural changes could critically depend on patterns of synchronization and desynchronization - i.e. the dynamic binding of neural assemblies - as also suggested by a wide range of previous electrophysiological studies. Moreover, the fact that these patterns occur at multiple frequencies support the evidence that brain functional networks contain multiple frequency channels along which information is transmitted. The graph theoretical approach represents an effective means to evaluate the functional connectivity patterns obtained from scalp EEG signals. The possibility to describe the complex brain networks sub-serving different functions in humans by means of "numbers" is a promising tool toward the generation of a better understanding of the brain functions. Table of Contents: Introduction / Brain Functional Connectivity / Graph Theory / High-Resolution EEG / Cortical Networks in Spinal Cord Injured Patients / Cortical Networks During a Lifelike Memory Task / Application to Time-varying Cortical Networks / Conclusions
Publisher: Springer Nature
ISBN: 3031016440
Category : Technology & Engineering
Languages : en
Pages : 84
Book Description
The present book illustrates the theoretical aspects of several methodologies related to the possibility of i) enhancing the poor spatial information of the electroencephalographic (EEG) activity on the scalp and giving a measure of the electrical activity on the cortical surface. ii) estimating the directional influences between any given pair of channels in a multivariate dataset. iii) modeling the brain networks as graphs. The possible applications are discussed in three different experimental designs regarding i) the study of pathological conditions during a motor task, ii) the study of memory processes during a cognitive task iii) the study of the instantaneous dynamics throughout the evolution of a motor task in physiological conditions. The main outcome from all those studies indicates clearly that the performance of cognitive and motor tasks as well as the presence of neural diseases can affect the brain network topology. This evidence gives the power of reflecting cerebral "states" or "traits" to the mathematical indexes derived from the graph theory. In particular, the observed structural changes could critically depend on patterns of synchronization and desynchronization - i.e. the dynamic binding of neural assemblies - as also suggested by a wide range of previous electrophysiological studies. Moreover, the fact that these patterns occur at multiple frequencies support the evidence that brain functional networks contain multiple frequency channels along which information is transmitted. The graph theoretical approach represents an effective means to evaluate the functional connectivity patterns obtained from scalp EEG signals. The possibility to describe the complex brain networks sub-serving different functions in humans by means of "numbers" is a promising tool toward the generation of a better understanding of the brain functions. Table of Contents: Introduction / Brain Functional Connectivity / Graph Theory / High-Resolution EEG / Cortical Networks in Spinal Cord Injured Patients / Cortical Networks During a Lifelike Memory Task / Application to Time-varying Cortical Networks / Conclusions
Biomaterials Science
Author: Buddy D. Ratner
Publisher: Academic Press
ISBN: 008087780X
Category : Science
Languages : en
Pages : 1610
Book Description
The revised edition of this renowned and bestselling title is the most comprehensive single text on all aspects of biomaterials science. It provides a balanced, insightful approach to both the learning of the science and technology of biomaterials and acts as the key reference for practitioners who are involved in the applications of materials in medicine. - Over 29,000 copies sold, this is the most comprehensive coverage of principles and applications of all classes of biomaterials: "the only such text that currently covers this area comprehensively" - Materials Today - Edited by four of the best-known figures in the biomaterials field today; fully endorsed and supported by the Society for Biomaterials - Fully revised and expanded, key new topics include of tissue engineering, drug delivery systems, and new clinical applications, with new teaching and learning material throughout, case studies and a downloadable image bank
Publisher: Academic Press
ISBN: 008087780X
Category : Science
Languages : en
Pages : 1610
Book Description
The revised edition of this renowned and bestselling title is the most comprehensive single text on all aspects of biomaterials science. It provides a balanced, insightful approach to both the learning of the science and technology of biomaterials and acts as the key reference for practitioners who are involved in the applications of materials in medicine. - Over 29,000 copies sold, this is the most comprehensive coverage of principles and applications of all classes of biomaterials: "the only such text that currently covers this area comprehensively" - Materials Today - Edited by four of the best-known figures in the biomaterials field today; fully endorsed and supported by the Society for Biomaterials - Fully revised and expanded, key new topics include of tissue engineering, drug delivery systems, and new clinical applications, with new teaching and learning material throughout, case studies and a downloadable image bank
Medical Equipment Maintenance
Author: Binseng Wang
Publisher: Springer Nature
ISBN: 3031016556
Category : Technology & Engineering
Languages : en
Pages : 76
Book Description
In addition to being essential for safe and effective patient care, medical equipment also has significant impact on the income and, thus, vitality of healthcare organizations. For this reason, its maintenance and management requires careful supervision by healthcare administrators, many of whom may not have the technical background to understand all of the relevant factors. This book presents the basic elements of medical equipment maintenance and management required of healthcare leaders responsible for managing or overseeing this function. It will enable these individuals to understand their professional responsibilities, as well as what they should expect from their supervised staff and how to measure and benchmark staff performance against equivalent performance levels at similar organizations. The book opens with a foundational summary of the laws, regulations, codes, and standards that are applicable to the maintenance and management of medical equipment in healthcare organizations. Next, the core functions of the team responsible for maintenance and management are described in sufficient detail for managers and overseers. Then the methods and measures for determining the effectiveness and efficiency of equipment maintenance and management are presented to allow performance management and benchmarking comparisons. The challenges and opportunities of managing healthcare organizations of different sizes, acuity levels, and geographical locations are discussed. Extensive bibliographic sources and material for further study are provided to assist students and healthcare leaders interested in acquiring more detailed knowledge. Table of Contents: Introduction / Regulatory Framework / Core Functions of Medical Equipment Maintenance and Management / CE Department Management / Performance Management / Discussion and Conclusions
Publisher: Springer Nature
ISBN: 3031016556
Category : Technology & Engineering
Languages : en
Pages : 76
Book Description
In addition to being essential for safe and effective patient care, medical equipment also has significant impact on the income and, thus, vitality of healthcare organizations. For this reason, its maintenance and management requires careful supervision by healthcare administrators, many of whom may not have the technical background to understand all of the relevant factors. This book presents the basic elements of medical equipment maintenance and management required of healthcare leaders responsible for managing or overseeing this function. It will enable these individuals to understand their professional responsibilities, as well as what they should expect from their supervised staff and how to measure and benchmark staff performance against equivalent performance levels at similar organizations. The book opens with a foundational summary of the laws, regulations, codes, and standards that are applicable to the maintenance and management of medical equipment in healthcare organizations. Next, the core functions of the team responsible for maintenance and management are described in sufficient detail for managers and overseers. Then the methods and measures for determining the effectiveness and efficiency of equipment maintenance and management are presented to allow performance management and benchmarking comparisons. The challenges and opportunities of managing healthcare organizations of different sizes, acuity levels, and geographical locations are discussed. Extensive bibliographic sources and material for further study are provided to assist students and healthcare leaders interested in acquiring more detailed knowledge. Table of Contents: Introduction / Regulatory Framework / Core Functions of Medical Equipment Maintenance and Management / CE Department Management / Performance Management / Discussion and Conclusions
Biomedical Technology Assessment
Author: Phillip Weinfurt
Publisher: Springer Nature
ISBN: 3031016416
Category : Technology & Engineering
Languages : en
Pages : 85
Book Description
Evaluating biomedical technology poses a significant challenge in light of the complexity and rate of introduction in today's healthcare delivery system. Successful evaluation requires an integration of clinical medicine, science, finance, and market analysis. Little guidance, however, exists for those who must conduct comprehensive technology evaluations. The 3Q Method meets these present day needs. The 3Q Method is organized around 3 key questions dealing with 1) clinical and scientific basis, 2) financial fit and 3) strategic and expertise fit. Both healthcare providers (e.g., hospitals) and medical industry providers can use the Method to evaluate medical devices, information systems and work processes from their own perspectives. The book describes the 3Q Method in detail and provides additional suggestions for optimal presentation and report preparation. Table of Contents: Introduction / Question #1: Is It Real? / Question #2: Can We Win? / Question #3: Is It Worth It? / 3Q Case Study Example -- Pershing Medical Company / Appendix A: Health Care Technology Assessment Sample Class Syllabus / Appendix B: How do Hospitals and Clinicians Get Paid? / Appendix C: Technology Assessment PowerPoint Report Guidelines / Appendix D: Class Report Scenario Example / Appendix E: Four-Blocker Slide Templates for 3Q Reports
Publisher: Springer Nature
ISBN: 3031016416
Category : Technology & Engineering
Languages : en
Pages : 85
Book Description
Evaluating biomedical technology poses a significant challenge in light of the complexity and rate of introduction in today's healthcare delivery system. Successful evaluation requires an integration of clinical medicine, science, finance, and market analysis. Little guidance, however, exists for those who must conduct comprehensive technology evaluations. The 3Q Method meets these present day needs. The 3Q Method is organized around 3 key questions dealing with 1) clinical and scientific basis, 2) financial fit and 3) strategic and expertise fit. Both healthcare providers (e.g., hospitals) and medical industry providers can use the Method to evaluate medical devices, information systems and work processes from their own perspectives. The book describes the 3Q Method in detail and provides additional suggestions for optimal presentation and report preparation. Table of Contents: Introduction / Question #1: Is It Real? / Question #2: Can We Win? / Question #3: Is It Worth It? / 3Q Case Study Example -- Pershing Medical Company / Appendix A: Health Care Technology Assessment Sample Class Syllabus / Appendix B: How do Hospitals and Clinicians Get Paid? / Appendix C: Technology Assessment PowerPoint Report Guidelines / Appendix D: Class Report Scenario Example / Appendix E: Four-Blocker Slide Templates for 3Q Reports
Models of Horizontal Eye Movements
Author: Alireza Ghahari
Publisher: Springer Nature
ISBN: 3031016637
Category : Technology & Engineering
Languages : en
Pages : 108
Book Description
There are five different types of eye movements: saccades, smooth pursuit, vestibular ocular eye movements, optokinetic eye movements, and vergence eye movements. The purpose of this book series is focused primarily on mathematical models of the horizontal saccadic eye movement system and the smooth pursuit system, rather than on how visual information is processed. In Part 1, early models of saccades and smooth pursuit are presented. A number of oculomotor plant models are described here beginning with the Westheimer model published in 1954, and up through our 1995 model involving a 4th order oculomotor plant model. In Part 2, a 2009 version of a state-of-the-art model is presented for horizontal saccades that is 3rd-order and linear, and controlled by a physiologically based time-optimal neural network. Part 3 describes a model of the saccade system, focusing on the neural network. It presents a neural network model of biophysical neurons in the midbrain for controlling oculomotor muscles during horizontal human saccades. In this book, a multiscale model of the saccade system is presented, focusing on a multiscale neural network and muscle fiber model. Chapter 1 presents a comprehensive model for the control of horizontal saccades using a muscle fiber model for the lateral and medial rectus muscles. The importance of this model is that each muscle fiber has a separate neural input. This model is robust and accounts for the neural activity for both large and small saccades. The muscle fiber model consists of serial sequences of muscle fibers in parallel with other serial sequences of muscle fibers. Each muscle fiber is described by a parallel combination of a linear length tension element, viscous element, and active-state tension generator. Chapter 2 presents a biophysically realistic neural network model in the midbrain to drive a muscle fiber oculomotor plant during horizontal monkey saccades. Neural circuitry, including omnipause neuron, premotor excitatory and inhibitory burst neurons, long lead burst neuron, tonic neuron, interneuron, abducens nucleus, and oculomotor nucleus, is developed to examine saccade dynamics. The time-optimal control mechanism demonstrates how the neural commands are encoded in the downstream saccadic pathway by realization of agonist and antagonist controller models. Consequently, each agonist muscle fiber is stimulated by an agonist neuron, while an antagonist muscle fiber is unstimulated by a pause and step from the antagonist neuron. It is concluded that the neural network is constrained by a minimum duration of the agonist pulse, and that the most dominant factor in determining the saccade magnitude is the number of active neurons for the small saccades. For the large saccades, however, the duration of agonist burst firing significantly affects the control of saccades. The proposed saccadic circuitry establishes a complete model of saccade generation since it not only includes the neural circuits at both the premotor and motor stages of the saccade generator, but it also uses a time-optimal controller to yield the desired saccade magnitude. Table of Contents: Acknowledgments / A New Linear Muscle Fiber Model for Neural Control of Saccades\footnotemark / A Physiological Neural Controller of a Muscle Fiber Oculomotor Plant in Horizontal Monkey Saccades\footnotemark / References / Authors' Biographies
Publisher: Springer Nature
ISBN: 3031016637
Category : Technology & Engineering
Languages : en
Pages : 108
Book Description
There are five different types of eye movements: saccades, smooth pursuit, vestibular ocular eye movements, optokinetic eye movements, and vergence eye movements. The purpose of this book series is focused primarily on mathematical models of the horizontal saccadic eye movement system and the smooth pursuit system, rather than on how visual information is processed. In Part 1, early models of saccades and smooth pursuit are presented. A number of oculomotor plant models are described here beginning with the Westheimer model published in 1954, and up through our 1995 model involving a 4th order oculomotor plant model. In Part 2, a 2009 version of a state-of-the-art model is presented for horizontal saccades that is 3rd-order and linear, and controlled by a physiologically based time-optimal neural network. Part 3 describes a model of the saccade system, focusing on the neural network. It presents a neural network model of biophysical neurons in the midbrain for controlling oculomotor muscles during horizontal human saccades. In this book, a multiscale model of the saccade system is presented, focusing on a multiscale neural network and muscle fiber model. Chapter 1 presents a comprehensive model for the control of horizontal saccades using a muscle fiber model for the lateral and medial rectus muscles. The importance of this model is that each muscle fiber has a separate neural input. This model is robust and accounts for the neural activity for both large and small saccades. The muscle fiber model consists of serial sequences of muscle fibers in parallel with other serial sequences of muscle fibers. Each muscle fiber is described by a parallel combination of a linear length tension element, viscous element, and active-state tension generator. Chapter 2 presents a biophysically realistic neural network model in the midbrain to drive a muscle fiber oculomotor plant during horizontal monkey saccades. Neural circuitry, including omnipause neuron, premotor excitatory and inhibitory burst neurons, long lead burst neuron, tonic neuron, interneuron, abducens nucleus, and oculomotor nucleus, is developed to examine saccade dynamics. The time-optimal control mechanism demonstrates how the neural commands are encoded in the downstream saccadic pathway by realization of agonist and antagonist controller models. Consequently, each agonist muscle fiber is stimulated by an agonist neuron, while an antagonist muscle fiber is unstimulated by a pause and step from the antagonist neuron. It is concluded that the neural network is constrained by a minimum duration of the agonist pulse, and that the most dominant factor in determining the saccade magnitude is the number of active neurons for the small saccades. For the large saccades, however, the duration of agonist burst firing significantly affects the control of saccades. The proposed saccadic circuitry establishes a complete model of saccade generation since it not only includes the neural circuits at both the premotor and motor stages of the saccade generator, but it also uses a time-optimal controller to yield the desired saccade magnitude. Table of Contents: Acknowledgments / A New Linear Muscle Fiber Model for Neural Control of Saccades\footnotemark / A Physiological Neural Controller of a Muscle Fiber Oculomotor Plant in Horizontal Monkey Saccades\footnotemark / References / Authors' Biographies
Understanding Atrial Fibrillation
Author: Luca Mainardi
Publisher: Springer Nature
ISBN: 3031016327
Category : Technology & Engineering
Languages : en
Pages : 122
Book Description
The book presents recent advances in signal processing techniques for modeling, analysis, and understanding of the heart's electrical activity during atrial fibrillation. This arrhythmia is the most commonly encountered in clinical practice and its complex and metamorphic nature represents a challenging problem for clinicians, engineers, and scientists. Research on atrial fibrillation has stimulated the development of a wide range of signal processing tools to better understand the mechanisms ruling its initiation, maintenance, and termination. This book provides undergraduate and graduate students, as well as researchers and practicing engineers, with an overview of techniques, including time domain techniques for atrial wave extraction, time-frequency analysis for exploring wave dynamics, and nonlinear techniques to characterize the ventricular response and the organization of atrial activity. The book includes an introductory chapter about atrial fibrillation and its mechanisms, treatment, and management. The successive chapters are dedicated to the analysis of atrial signals recorded on the body surface and to the quantification of ventricular response. The rest of the book explores techniques to characterize endo- and epicardial recordings and to model atrial conduction. Under the appearance of being a monothematic book on atrial fibrillation, the reader will not only recognize common problems of biomedical signal processing but also discover that analysis of atrial fibrillation is a unique challenge for developing and testing novel signal processing tools. Table of Contents: Analysis of Ventricular Response During Atrial Fibrillation / Organization Measures of Atrial Activity During Fibrillation / Modeling Atrial Fibrillation: From Myocardial Cells to ECG / Algorithms for Atrial Tachyarrythmia Detection for Long-Term Monitoring with Implantable Devices
Publisher: Springer Nature
ISBN: 3031016327
Category : Technology & Engineering
Languages : en
Pages : 122
Book Description
The book presents recent advances in signal processing techniques for modeling, analysis, and understanding of the heart's electrical activity during atrial fibrillation. This arrhythmia is the most commonly encountered in clinical practice and its complex and metamorphic nature represents a challenging problem for clinicians, engineers, and scientists. Research on atrial fibrillation has stimulated the development of a wide range of signal processing tools to better understand the mechanisms ruling its initiation, maintenance, and termination. This book provides undergraduate and graduate students, as well as researchers and practicing engineers, with an overview of techniques, including time domain techniques for atrial wave extraction, time-frequency analysis for exploring wave dynamics, and nonlinear techniques to characterize the ventricular response and the organization of atrial activity. The book includes an introductory chapter about atrial fibrillation and its mechanisms, treatment, and management. The successive chapters are dedicated to the analysis of atrial signals recorded on the body surface and to the quantification of ventricular response. The rest of the book explores techniques to characterize endo- and epicardial recordings and to model atrial conduction. Under the appearance of being a monothematic book on atrial fibrillation, the reader will not only recognize common problems of biomedical signal processing but also discover that analysis of atrial fibrillation is a unique challenge for developing and testing novel signal processing tools. Table of Contents: Analysis of Ventricular Response During Atrial Fibrillation / Organization Measures of Atrial Activity During Fibrillation / Modeling Atrial Fibrillation: From Myocardial Cells to ECG / Algorithms for Atrial Tachyarrythmia Detection for Long-Term Monitoring with Implantable Devices
Computational Genomic Signatures
Author: Ozkan Ufuk Nalbantoglu
Publisher: Springer Nature
ISBN: 3031016505
Category : Technology & Engineering
Languages : en
Pages : 113
Book Description
Recent advances in development of sequencing technology has resulted in a deluge of genomic data. In order to make sense of this data, there is an urgent need for algorithms for data processing and quantitative reasoning. An emerging in silico approach, called computational genomic signatures, addresses this need by representing global species-specific features of genomes using simple mathematical models. This text introduces the general concept of computational genomic signatures, and it reviews some of the DNA sequence models which can be used as computational genomic signatures. The text takes the position that a practical computational genomic signature consists of both a model and a measure for computing the distance or similarity between models. Therefore, a discussion of sequence similarity/distance measurement in the context of computational genomic signatures is presented. The remainder of the text covers various applications of computational genomic signatures in the areas of metagenomics, phylogenetics and the detection of horizontal gene transfer. Table of Contents: Genome Signatures, Definition and Background / Other Computational Characterizations as Genome Signatures / Measuring Distance of Biological Sequences Using Genome Signatures / Applications: Phylogeny Construction / Applications: Metagenomics / Applications: Horizontal DNA Transfer Detection
Publisher: Springer Nature
ISBN: 3031016505
Category : Technology & Engineering
Languages : en
Pages : 113
Book Description
Recent advances in development of sequencing technology has resulted in a deluge of genomic data. In order to make sense of this data, there is an urgent need for algorithms for data processing and quantitative reasoning. An emerging in silico approach, called computational genomic signatures, addresses this need by representing global species-specific features of genomes using simple mathematical models. This text introduces the general concept of computational genomic signatures, and it reviews some of the DNA sequence models which can be used as computational genomic signatures. The text takes the position that a practical computational genomic signature consists of both a model and a measure for computing the distance or similarity between models. Therefore, a discussion of sequence similarity/distance measurement in the context of computational genomic signatures is presented. The remainder of the text covers various applications of computational genomic signatures in the areas of metagenomics, phylogenetics and the detection of horizontal gene transfer. Table of Contents: Genome Signatures, Definition and Background / Other Computational Characterizations as Genome Signatures / Measuring Distance of Biological Sequences Using Genome Signatures / Applications: Phylogeny Construction / Applications: Metagenomics / Applications: Horizontal DNA Transfer Detection
Ethics for Bioengineers
Author: Monique Frize
Publisher: Springer Nature
ISBN: 3031016467
Category : Technology & Engineering
Languages : en
Pages : 72
Book Description
Increasingly, biomedical scientists and engineers are involved in projects, design, or research and development that involve humans or animals. The book presents general concepts on professionalism and the regulation of the profession of engineering, including a discussion on what is ethics and moral conduct, ethical theories and the codes of ethics that are most relevant for engineers. An ethical decision-making process is suggested. Other issues such as conflicts of interest, plagiarism, intellectual property, confidentiality, privacy, fraud, and corruption are presented. General guidelines, the process for obtaining ethics approval from Ethics Review Boards, and the importance of obtaining informed consent from volunteers recruited for studies are presented. A discussion on research with animals is included. Ethical dilemmas focus on reproductive technologies, stem cells, cloning, genetic testing, and designer babies. The book includes a discussion on ethics and the technologies of body enhancement and of regeneration. The importance of assessing the impact of technology on people, society, and on our planet is stressed. Particular attention is given to nanotechnologies, the environment, and issues that pertain to developing countries. Ideas on gender, culture, and ethics focus on how research and access to medical services have, at times, been discriminatory towards women. The cultural aspects focus on organ transplantation in Japan, and a case study of an Aboriginal child in Canada; both examples show the impact that culture can have on how care is provided or accepted. The final section of the book discusses data collection and analysis and offers a guideline for honest reporting of results, avoiding fraud, or unethical approaches. The appendix presents a few case studies where fraud and/or unethical research have occurred. Table of Contents: Introduction to Ethics / Experiments with Human Subjects or Animals / Examples of Ethical Dilemmas in Biomedical Research / Technology and Society / Gender, Culture, and Ethics / Data Collection and Analysis
Publisher: Springer Nature
ISBN: 3031016467
Category : Technology & Engineering
Languages : en
Pages : 72
Book Description
Increasingly, biomedical scientists and engineers are involved in projects, design, or research and development that involve humans or animals. The book presents general concepts on professionalism and the regulation of the profession of engineering, including a discussion on what is ethics and moral conduct, ethical theories and the codes of ethics that are most relevant for engineers. An ethical decision-making process is suggested. Other issues such as conflicts of interest, plagiarism, intellectual property, confidentiality, privacy, fraud, and corruption are presented. General guidelines, the process for obtaining ethics approval from Ethics Review Boards, and the importance of obtaining informed consent from volunteers recruited for studies are presented. A discussion on research with animals is included. Ethical dilemmas focus on reproductive technologies, stem cells, cloning, genetic testing, and designer babies. The book includes a discussion on ethics and the technologies of body enhancement and of regeneration. The importance of assessing the impact of technology on people, society, and on our planet is stressed. Particular attention is given to nanotechnologies, the environment, and issues that pertain to developing countries. Ideas on gender, culture, and ethics focus on how research and access to medical services have, at times, been discriminatory towards women. The cultural aspects focus on organ transplantation in Japan, and a case study of an Aboriginal child in Canada; both examples show the impact that culture can have on how care is provided or accepted. The final section of the book discusses data collection and analysis and offers a guideline for honest reporting of results, avoiding fraud, or unethical approaches. The appendix presents a few case studies where fraud and/or unethical research have occurred. Table of Contents: Introduction to Ethics / Experiments with Human Subjects or Animals / Examples of Ethical Dilemmas in Biomedical Research / Technology and Society / Gender, Culture, and Ethics / Data Collection and Analysis