Author: W.D. Wallis
Publisher: Springer Science & Business Media
ISBN: 0817645802
Category : Mathematics
Languages : en
Pages : 266
Book Description
Concisely written, gentle introduction to graph theory suitable as a textbook or for self-study Graph-theoretic applications from diverse fields (computer science, engineering, chemistry, management science) 2nd ed. includes new chapters on labeling and communications networks and small worlds, as well as expanded beginner's material Many additional changes, improvements, and corrections resulting from classroom use
A Beginner's Guide to Graph Theory
Author: W.D. Wallis
Publisher: Springer Science & Business Media
ISBN: 0817645802
Category : Mathematics
Languages : en
Pages : 266
Book Description
Concisely written, gentle introduction to graph theory suitable as a textbook or for self-study Graph-theoretic applications from diverse fields (computer science, engineering, chemistry, management science) 2nd ed. includes new chapters on labeling and communications networks and small worlds, as well as expanded beginner's material Many additional changes, improvements, and corrections resulting from classroom use
Publisher: Springer Science & Business Media
ISBN: 0817645802
Category : Mathematics
Languages : en
Pages : 266
Book Description
Concisely written, gentle introduction to graph theory suitable as a textbook or for self-study Graph-theoretic applications from diverse fields (computer science, engineering, chemistry, management science) 2nd ed. includes new chapters on labeling and communications networks and small worlds, as well as expanded beginner's material Many additional changes, improvements, and corrections resulting from classroom use
A Beginner's Guide to Graph Theory
Author: W.D. Wallis
Publisher: Springer Science & Business Media
ISBN: 1475731345
Category : Mathematics
Languages : en
Pages : 244
Book Description
Because of its wide applicability, graph theory is one of the fast-growing areas of modern mathematics. Graphs arise as mathematical models in areas as diverse as management science, chemistry, resource planning, and computing. Moreover, the theory of graphs provides a spectrum of methods of proof and is a good train ing ground for pure mathematics. Thus, many colleges and universities provide a first course in graph theory that is intended primarily for mathematics majors but accessible to other students at the senior Ievel. This text is intended for such a course. I have presented this course many times. Over the years classes have included mainly mathematics and computer science majors, but there have been several engineers and occasional psychologists as weil. Often undergraduate and graduate students are in the same dass. Many instructors will no doubt find themselves with similar mixed groups. lt is to be expected that anyone enrolling in a senior Ievel mathematics course will be comfortable with mathematical ideas and notation. In particular, I assume the reader is familiar with the basic concepts of set theory, has seen mathematical induction, and has a passing acquaintance with matrices and algebra. However, one cannot assume that the students in a first graph theory course will have a good knowledge of any specific advanced area. My reaction to this is to avoid too many specific prerequisites. The main requirement, namely a little mathematical maturity, may have been acquired in a variety of ways.
Publisher: Springer Science & Business Media
ISBN: 1475731345
Category : Mathematics
Languages : en
Pages : 244
Book Description
Because of its wide applicability, graph theory is one of the fast-growing areas of modern mathematics. Graphs arise as mathematical models in areas as diverse as management science, chemistry, resource planning, and computing. Moreover, the theory of graphs provides a spectrum of methods of proof and is a good train ing ground for pure mathematics. Thus, many colleges and universities provide a first course in graph theory that is intended primarily for mathematics majors but accessible to other students at the senior Ievel. This text is intended for such a course. I have presented this course many times. Over the years classes have included mainly mathematics and computer science majors, but there have been several engineers and occasional psychologists as weil. Often undergraduate and graduate students are in the same dass. Many instructors will no doubt find themselves with similar mixed groups. lt is to be expected that anyone enrolling in a senior Ievel mathematics course will be comfortable with mathematical ideas and notation. In particular, I assume the reader is familiar with the basic concepts of set theory, has seen mathematical induction, and has a passing acquaintance with matrices and algebra. However, one cannot assume that the students in a first graph theory course will have a good knowledge of any specific advanced area. My reaction to this is to avoid too many specific prerequisites. The main requirement, namely a little mathematical maturity, may have been acquired in a variety of ways.
A Beginner’s Guide to Discrete Mathematics
Author: W.D. Wallis
Publisher: Springer Science & Business Media
ISBN: 1475738269
Category : Mathematics
Languages : en
Pages : 376
Book Description
This introduction to discrete mathematics is aimed at freshmen and sophomores in mathematics and computer science. It begins with a survey of number systems and elementary set theory before moving on to treat data structures, counting, probability, relations and functions, graph theory, matrices, number theory and cryptography. The end of each section contains problem sets with selected solutions, and good examples occur throughout the text.
Publisher: Springer Science & Business Media
ISBN: 1475738269
Category : Mathematics
Languages : en
Pages : 376
Book Description
This introduction to discrete mathematics is aimed at freshmen and sophomores in mathematics and computer science. It begins with a survey of number systems and elementary set theory before moving on to treat data structures, counting, probability, relations and functions, graph theory, matrices, number theory and cryptography. The end of each section contains problem sets with selected solutions, and good examples occur throughout the text.
Graphs and Matrices
Author: Ravindra B. Bapat
Publisher: Springer
ISBN: 1447165691
Category : Mathematics
Languages : en
Pages : 197
Book Description
This new edition illustrates the power of linear algebra in the study of graphs. The emphasis on matrix techniques is greater than in other texts on algebraic graph theory. Important matrices associated with graphs (for example, incidence, adjacency and Laplacian matrices) are treated in detail. Presenting a useful overview of selected topics in algebraic graph theory, early chapters of the text focus on regular graphs, algebraic connectivity, the distance matrix of a tree, and its generalized version for arbitrary graphs, known as the resistance matrix. Coverage of later topics include Laplacian eigenvalues of threshold graphs, the positive definite completion problem and matrix games based on a graph. Such an extensive coverage of the subject area provides a welcome prompt for further exploration. The inclusion of exercises enables practical learning throughout the book. In the new edition, a new chapter is added on the line graph of a tree, while some results in Chapter 6 on Perron-Frobenius theory are reorganized. Whilst this book will be invaluable to students and researchers in graph theory and combinatorial matrix theory, it will also benefit readers in the sciences and engineering.
Publisher: Springer
ISBN: 1447165691
Category : Mathematics
Languages : en
Pages : 197
Book Description
This new edition illustrates the power of linear algebra in the study of graphs. The emphasis on matrix techniques is greater than in other texts on algebraic graph theory. Important matrices associated with graphs (for example, incidence, adjacency and Laplacian matrices) are treated in detail. Presenting a useful overview of selected topics in algebraic graph theory, early chapters of the text focus on regular graphs, algebraic connectivity, the distance matrix of a tree, and its generalized version for arbitrary graphs, known as the resistance matrix. Coverage of later topics include Laplacian eigenvalues of threshold graphs, the positive definite completion problem and matrix games based on a graph. Such an extensive coverage of the subject area provides a welcome prompt for further exploration. The inclusion of exercises enables practical learning throughout the book. In the new edition, a new chapter is added on the line graph of a tree, while some results in Chapter 6 on Perron-Frobenius theory are reorganized. Whilst this book will be invaluable to students and researchers in graph theory and combinatorial matrix theory, it will also benefit readers in the sciences and engineering.
A Beginner’s Guide to Finite Mathematics
Author: W.D. Wallis
Publisher: Springer Science & Business Media
ISBN: 1475738145
Category : Mathematics
Languages : en
Pages : 363
Book Description
This concisely written text in finite mathematics gives a sequential, distinctly applied presentation of topics, employing a pedagogical approach that is ideal for freshmen and sophomores in business, the social sciences, and the liberal arts. The work opens with a brief review of sets and numbers, followed by an introduction to data sets, counting arguments, and the Binomial Theorem, which sets the foundation for elementary probability theory and some basic statistics. Further chapters treat graph theory as it relates to modelling, matrices and vectors, and linear programming. Requiring only two years of high school algebra, this book's many examples and illuminating problem sets - with selected solutions - will appeal to a wide audience of students and teachers.
Publisher: Springer Science & Business Media
ISBN: 1475738145
Category : Mathematics
Languages : en
Pages : 363
Book Description
This concisely written text in finite mathematics gives a sequential, distinctly applied presentation of topics, employing a pedagogical approach that is ideal for freshmen and sophomores in business, the social sciences, and the liberal arts. The work opens with a brief review of sets and numbers, followed by an introduction to data sets, counting arguments, and the Binomial Theorem, which sets the foundation for elementary probability theory and some basic statistics. Further chapters treat graph theory as it relates to modelling, matrices and vectors, and linear programming. Requiring only two years of high school algebra, this book's many examples and illuminating problem sets - with selected solutions - will appeal to a wide audience of students and teachers.
Expander Families and Cayley Graphs
Author: Mike Krebs
Publisher: OUP USA
ISBN: 0199767114
Category : Mathematics
Languages : en
Pages : 283
Book Description
Expander families enjoy a wide range of applications in mathematics and computer science, and their study is a fascinating one in its own right. Expander Families and Cayley Graphs: A Beginner's Guide provides an introduction to the mathematical theory underlying these objects. The central notion in the book is that of expansion, which roughly means the quality of a graph as a communications network. Cayley graphs are certain graphs constructed from groups; they play a prominent role in the study of expander families. The isoperimetric constant, the second largest eigenvalue, the diameter, and the Kazhdan constant are four measures of the expansion quality of a Cayley graph. The book carefully develops these concepts, discussing their relationships to one another and to subgroups and quotients as well as their best-case growth rates. Topics include graph spectra (i.e., eigenvalues); a Cheeger-Buser-type inequality for regular graphs; group quotients and graph coverings; subgroups and Schreier generators; the Alon-Boppana theorem on the second largest eigenvalue of a regular graph; Ramanujan graphs; diameter estimates for Cayley graphs; the zig-zag product and its relation to semidirect products of groups; eigenvalues of Cayley graphs; Paley graphs; and Kazhdan constants. The book was written with undergraduate math majors in mind; indeed, several dozen of them field-tested it. The prerequisites are minimal: one course in linear algebra, and one course in group theory. No background in graph theory or representation theory is assumed; the book develops from scatch the required facts from these fields. The authors include not only overviews and quick capsule summaries of key concepts, but also details of potentially confusing lines of reasoning. The book contains ideas for student research projects (for capstone projects, REUs, etc.), exercises (both easy and hard), and extensive notes with references to the literature.
Publisher: OUP USA
ISBN: 0199767114
Category : Mathematics
Languages : en
Pages : 283
Book Description
Expander families enjoy a wide range of applications in mathematics and computer science, and their study is a fascinating one in its own right. Expander Families and Cayley Graphs: A Beginner's Guide provides an introduction to the mathematical theory underlying these objects. The central notion in the book is that of expansion, which roughly means the quality of a graph as a communications network. Cayley graphs are certain graphs constructed from groups; they play a prominent role in the study of expander families. The isoperimetric constant, the second largest eigenvalue, the diameter, and the Kazhdan constant are four measures of the expansion quality of a Cayley graph. The book carefully develops these concepts, discussing their relationships to one another and to subgroups and quotients as well as their best-case growth rates. Topics include graph spectra (i.e., eigenvalues); a Cheeger-Buser-type inequality for regular graphs; group quotients and graph coverings; subgroups and Schreier generators; the Alon-Boppana theorem on the second largest eigenvalue of a regular graph; Ramanujan graphs; diameter estimates for Cayley graphs; the zig-zag product and its relation to semidirect products of groups; eigenvalues of Cayley graphs; Paley graphs; and Kazhdan constants. The book was written with undergraduate math majors in mind; indeed, several dozen of them field-tested it. The prerequisites are minimal: one course in linear algebra, and one course in group theory. No background in graph theory or representation theory is assumed; the book develops from scatch the required facts from these fields. The authors include not only overviews and quick capsule summaries of key concepts, but also details of potentially confusing lines of reasoning. The book contains ideas for student research projects (for capstone projects, REUs, etc.), exercises (both easy and hard), and extensive notes with references to the literature.
Graph Theory
Author: Frank Harary
Publisher:
ISBN:
Category : Graph theory
Languages : en
Pages : 286
Book Description
Publisher:
ISBN:
Category : Graph theory
Languages : en
Pages : 286
Book Description
A First Course in Graph Theory
Author: Gary Chartrand
Publisher: Courier Corporation
ISBN: 0486297306
Category : Mathematics
Languages : en
Pages : 466
Book Description
Written by two prominent figures in the field, this comprehensive text provides a remarkably student-friendly approach. Its sound yet accessible treatment emphasizes the history of graph theory and offers unique examples and lucid proofs. 2004 edition.
Publisher: Courier Corporation
ISBN: 0486297306
Category : Mathematics
Languages : en
Pages : 466
Book Description
Written by two prominent figures in the field, this comprehensive text provides a remarkably student-friendly approach. Its sound yet accessible treatment emphasizes the history of graph theory and offers unique examples and lucid proofs. 2004 edition.
Combinatorics and Graph Theory
Author: John Harris
Publisher: Springer Science & Business Media
ISBN: 0387797114
Category : Mathematics
Languages : en
Pages : 392
Book Description
These notes were first used in an introductory course team taught by the authors at Appalachian State University to advanced undergraduates and beginning graduates. The text was written with four pedagogical goals in mind: offer a variety of topics in one course, get to the main themes and tools as efficiently as possible, show the relationships between the different topics, and include recent results to convince students that mathematics is a living discipline.
Publisher: Springer Science & Business Media
ISBN: 0387797114
Category : Mathematics
Languages : en
Pages : 392
Book Description
These notes were first used in an introductory course team taught by the authors at Appalachian State University to advanced undergraduates and beginning graduates. The text was written with four pedagogical goals in mind: offer a variety of topics in one course, get to the main themes and tools as efficiently as possible, show the relationships between the different topics, and include recent results to convince students that mathematics is a living discipline.
Introduction to Graph Theory
Author: Richard J. Trudeau
Publisher: Courier Corporation
ISBN: 0486318664
Category : Mathematics
Languages : en
Pages : 242
Book Description
Aimed at "the mathematically traumatized," this text offers nontechnical coverage of graph theory, with exercises. Discusses planar graphs, Euler's formula, Platonic graphs, coloring, the genus of a graph, Euler walks, Hamilton walks, more. 1976 edition.
Publisher: Courier Corporation
ISBN: 0486318664
Category : Mathematics
Languages : en
Pages : 242
Book Description
Aimed at "the mathematically traumatized," this text offers nontechnical coverage of graph theory, with exercises. Discusses planar graphs, Euler's formula, Platonic graphs, coloring, the genus of a graph, Euler walks, Hamilton walks, more. 1976 edition.