Author: Dimitrios A. Lamprou
Publisher: MDPI
ISBN: 3039364235
Category : Medical
Languages : en
Pages : 436
Book Description
The 3D printing (3DP) process was patented in 1986; however, only in the last decade has it begun to be used for medical applications, as well as in the fields of prosthetics, bio-fabrication, and pharmaceutical printing. 3DP or additive manufacturing (AM) is a family of technologies that implement layer-by-layer processes in order to fabricate physical models based on a computer aided design (CAD) model. 3D printing permits the fabrication of high degrees of complexity with great reproducibility in a fast and cost-effective fashion. 3DP technology offers a new paradigm for the direct manufacture of individual dosage forms and has the potential to allow for variations in size and geometry as well as control dose and release behavior. Furthermore, the low cost and ease of use of 3DP systems means that the possibility of manufacturing medicines and medical devices at the point of dispensing or at the point of use could become a reality. 3DP thus offers the perfect innovative manufacturing route to address the critical capability gap that hinders the widespread exploitation of personalized medicines for molecules that are currently not easy to deliver. This Special Issue will address new developments in the area of 3D printing and bioprinting for drug delivery applications, covering the recent advantages and future directions of additive manufacturing for pharmaceutical products.
3D Printing of Pharmaceuticals and Drug Delivery Devices
Author: Dimitrios A. Lamprou
Publisher: MDPI
ISBN: 3039364235
Category : Medical
Languages : en
Pages : 436
Book Description
The 3D printing (3DP) process was patented in 1986; however, only in the last decade has it begun to be used for medical applications, as well as in the fields of prosthetics, bio-fabrication, and pharmaceutical printing. 3DP or additive manufacturing (AM) is a family of technologies that implement layer-by-layer processes in order to fabricate physical models based on a computer aided design (CAD) model. 3D printing permits the fabrication of high degrees of complexity with great reproducibility in a fast and cost-effective fashion. 3DP technology offers a new paradigm for the direct manufacture of individual dosage forms and has the potential to allow for variations in size and geometry as well as control dose and release behavior. Furthermore, the low cost and ease of use of 3DP systems means that the possibility of manufacturing medicines and medical devices at the point of dispensing or at the point of use could become a reality. 3DP thus offers the perfect innovative manufacturing route to address the critical capability gap that hinders the widespread exploitation of personalized medicines for molecules that are currently not easy to deliver. This Special Issue will address new developments in the area of 3D printing and bioprinting for drug delivery applications, covering the recent advantages and future directions of additive manufacturing for pharmaceutical products.
Publisher: MDPI
ISBN: 3039364235
Category : Medical
Languages : en
Pages : 436
Book Description
The 3D printing (3DP) process was patented in 1986; however, only in the last decade has it begun to be used for medical applications, as well as in the fields of prosthetics, bio-fabrication, and pharmaceutical printing. 3DP or additive manufacturing (AM) is a family of technologies that implement layer-by-layer processes in order to fabricate physical models based on a computer aided design (CAD) model. 3D printing permits the fabrication of high degrees of complexity with great reproducibility in a fast and cost-effective fashion. 3DP technology offers a new paradigm for the direct manufacture of individual dosage forms and has the potential to allow for variations in size and geometry as well as control dose and release behavior. Furthermore, the low cost and ease of use of 3DP systems means that the possibility of manufacturing medicines and medical devices at the point of dispensing or at the point of use could become a reality. 3DP thus offers the perfect innovative manufacturing route to address the critical capability gap that hinders the widespread exploitation of personalized medicines for molecules that are currently not easy to deliver. This Special Issue will address new developments in the area of 3D printing and bioprinting for drug delivery applications, covering the recent advantages and future directions of additive manufacturing for pharmaceutical products.
3D Printing of Pharmaceuticals
Author: Abdul W. Basit
Publisher: Springer
ISBN: 3319907557
Category : Medical
Languages : en
Pages : 246
Book Description
3D printing is forecast to revolutionise the pharmaceutical sector, changing the face of medicine development, manufacture and use. Potential applications range from pre-clinical drug development and dosage form design through to the fabrication of functionalised implants and regenerative medicine. Within clinical pharmacy practice, printing technologies may finally lead to the concept of personalised medicines becoming a reality. This volume aims to be the definitive resource for anyone thinking of developing or using 3D printing technologies in the pharmaceutical sector, with a strong focus on the translation of printing technologies to a clinical setting. This text brings together leading experts to provide extensive information on an array of 3D printing techniques, reviewing the current printing technologies in the pharmaceutical manufacturing supply chain, in particular, highlighting the state-of-the-art applications in medicine and discussing modern drug product manufacture from a regulatory perspective. This book is a highly valuable resource for a range of demographics, including academic researchers and the pharmaceutical industry, providing a comprehensive inventory detailing the current and future applications of 3D printing in pharmaceuticals. Abdul W. Basit is Professor of Pharmaceutics at the UCL School of Pharmacy, University College London. Abdul’s research sits at the interface between pharmaceutical science and gastroenterology, forging links between basic science and clinical outcomes. He leads a large and multidisciplinary research group, and the goal of his work is to further the understanding of gastrointestinal physiology by fundamental research. So far, this knowledge has been translated into the design of new technologies and improved disease treatments, many of which are currently in late-stage clinical trials. He has published over 350 papers, book chapters and abstracts and delivered more than 250 invited research presentations. Abdul is also a serial entrepreneur and has filed 25 patents and founded 3 pharmaceutical companies (Kuecept, Intract Pharma, FabRx). Abdul is a frequent speaker at international conferences, serves as a consultant to many pharmaceutical companies and is on the advisory boards of scientific journals, healthcare organisations and charitable bodies. He is the European Editor of the International Journal of Pharmaceutics. Abdul was the recipient of the Young Investigator Award in Pharmaceutics and Pharmaceutical Technology from the American Association of Pharmaceutical Scientists (AAPS) and is the only non-North American scientist to receive this award. He was also the recipient of the Academy of Pharmaceutical Sciences (APS) award. Simon Gaisford holds a Chair in Pharmaceutics and is Head of the Department of Pharmaceutics at the UCL School of Pharmacy, University College London. He has published 110 papers, 8 book chapters and 4 authored books. His research is focused on novel technologies for manufacturing medicines, particularly using ink-jet printing and 3D printing, and he is an expert in the physico-chemical characterisation of compounds and formulations with thermal methods and calorimetry.
Publisher: Springer
ISBN: 3319907557
Category : Medical
Languages : en
Pages : 246
Book Description
3D printing is forecast to revolutionise the pharmaceutical sector, changing the face of medicine development, manufacture and use. Potential applications range from pre-clinical drug development and dosage form design through to the fabrication of functionalised implants and regenerative medicine. Within clinical pharmacy practice, printing technologies may finally lead to the concept of personalised medicines becoming a reality. This volume aims to be the definitive resource for anyone thinking of developing or using 3D printing technologies in the pharmaceutical sector, with a strong focus on the translation of printing technologies to a clinical setting. This text brings together leading experts to provide extensive information on an array of 3D printing techniques, reviewing the current printing technologies in the pharmaceutical manufacturing supply chain, in particular, highlighting the state-of-the-art applications in medicine and discussing modern drug product manufacture from a regulatory perspective. This book is a highly valuable resource for a range of demographics, including academic researchers and the pharmaceutical industry, providing a comprehensive inventory detailing the current and future applications of 3D printing in pharmaceuticals. Abdul W. Basit is Professor of Pharmaceutics at the UCL School of Pharmacy, University College London. Abdul’s research sits at the interface between pharmaceutical science and gastroenterology, forging links between basic science and clinical outcomes. He leads a large and multidisciplinary research group, and the goal of his work is to further the understanding of gastrointestinal physiology by fundamental research. So far, this knowledge has been translated into the design of new technologies and improved disease treatments, many of which are currently in late-stage clinical trials. He has published over 350 papers, book chapters and abstracts and delivered more than 250 invited research presentations. Abdul is also a serial entrepreneur and has filed 25 patents and founded 3 pharmaceutical companies (Kuecept, Intract Pharma, FabRx). Abdul is a frequent speaker at international conferences, serves as a consultant to many pharmaceutical companies and is on the advisory boards of scientific journals, healthcare organisations and charitable bodies. He is the European Editor of the International Journal of Pharmaceutics. Abdul was the recipient of the Young Investigator Award in Pharmaceutics and Pharmaceutical Technology from the American Association of Pharmaceutical Scientists (AAPS) and is the only non-North American scientist to receive this award. He was also the recipient of the Academy of Pharmaceutical Sciences (APS) award. Simon Gaisford holds a Chair in Pharmaceutics and is Head of the Department of Pharmaceutics at the UCL School of Pharmacy, University College London. He has published 110 papers, 8 book chapters and 4 authored books. His research is focused on novel technologies for manufacturing medicines, particularly using ink-jet printing and 3D printing, and he is an expert in the physico-chemical characterisation of compounds and formulations with thermal methods and calorimetry.
3D Printing in Biomedical Engineering
Author: Sunpreet Singh
Publisher: Springer Nature
ISBN: 9811554242
Category : Technology & Engineering
Languages : en
Pages : 346
Book Description
This book gives a comprehensive overview of the rapidly evolving field of three-dimensional (3D) printing, and its increasing applications in the biomedical domain. 3D printing has distinct advantages like improved quality, cost-effectiveness, and higher efficiency compared to traditional manufacturing processes. Besides these advantages, current challenges and opportunities regarding choice of material, design, and efficiency are addressed in the book. Individual chapters also focus on select areas of applications such as surgical guides, tissue regeneration, artificial scaffolds and implants, and drug delivery and release. This book will be a valuable source of information for researchers and professionals interested in the expanding biomedical applications of 3D printing.
Publisher: Springer Nature
ISBN: 9811554242
Category : Technology & Engineering
Languages : en
Pages : 346
Book Description
This book gives a comprehensive overview of the rapidly evolving field of three-dimensional (3D) printing, and its increasing applications in the biomedical domain. 3D printing has distinct advantages like improved quality, cost-effectiveness, and higher efficiency compared to traditional manufacturing processes. Besides these advantages, current challenges and opportunities regarding choice of material, design, and efficiency are addressed in the book. Individual chapters also focus on select areas of applications such as surgical guides, tissue regeneration, artificial scaffolds and implants, and drug delivery and release. This book will be a valuable source of information for researchers and professionals interested in the expanding biomedical applications of 3D printing.
3D Printing of Pharmaceutical and Drug Delivery Devices
Author: Dimitrios A. Lamprou
Publisher: John Wiley & Sons
ISBN: 1119835984
Category : Science
Languages : en
Pages : 276
Book Description
3D Printing of Pharmaceutical and Drug Delivery Devices 3D Printing of Pharmaceutical and Drug Delivery Devices Discover the latest, fast-developing technology to help move towards more cost-effective, small-batch, decentralized manufacturing of personalized systems 3D printing has revolutionized manufacturing. Its precision and flexibility have enabled the large-scale production of materials and devices too complex for conventional industrial manufacturing. This has been particularly revolutionary in the field of pharmaceutical production, where 3D printing is being integrated into the manufacture of both drugs and drug delivery devices. It has never been more important for industry professionals to understand this form of production. 3D Printing of Pharmaceuticals and Drug Delivery Devices: Progress from Bench to Bedside offers a comprehensive overview of 3D printing technology and its pharmaceutical applications. It introduces readers to a world in which bespoke drug delivery systems developed for specific users or conditions is rapidly becoming a reality. Its detailed coverage of strategies and industrial processes incorporates the latest research and real-world experience of production. 3D Printing of Pharmaceuticals and Drug Delivery Devices: Progress from Bench to Bedside readers will also find: A multi-disciplinary authorial team of industry leaders Discussion of common technical and regulatory barriers and their possible solutions Far-ranging discussion of pharmaceutical applications across all sectors 3D Printing of Pharmaceuticals and Drug Delivery Devices: Progress from Bench to Bedside is essential reading for pharmaceutical industry professionals and researchers looking to occupy the leading edge.
Publisher: John Wiley & Sons
ISBN: 1119835984
Category : Science
Languages : en
Pages : 276
Book Description
3D Printing of Pharmaceutical and Drug Delivery Devices 3D Printing of Pharmaceutical and Drug Delivery Devices Discover the latest, fast-developing technology to help move towards more cost-effective, small-batch, decentralized manufacturing of personalized systems 3D printing has revolutionized manufacturing. Its precision and flexibility have enabled the large-scale production of materials and devices too complex for conventional industrial manufacturing. This has been particularly revolutionary in the field of pharmaceutical production, where 3D printing is being integrated into the manufacture of both drugs and drug delivery devices. It has never been more important for industry professionals to understand this form of production. 3D Printing of Pharmaceuticals and Drug Delivery Devices: Progress from Bench to Bedside offers a comprehensive overview of 3D printing technology and its pharmaceutical applications. It introduces readers to a world in which bespoke drug delivery systems developed for specific users or conditions is rapidly becoming a reality. Its detailed coverage of strategies and industrial processes incorporates the latest research and real-world experience of production. 3D Printing of Pharmaceuticals and Drug Delivery Devices: Progress from Bench to Bedside readers will also find: A multi-disciplinary authorial team of industry leaders Discussion of common technical and regulatory barriers and their possible solutions Far-ranging discussion of pharmaceutical applications across all sectors 3D Printing of Pharmaceuticals and Drug Delivery Devices: Progress from Bench to Bedside is essential reading for pharmaceutical industry professionals and researchers looking to occupy the leading edge.
Advanced 3D-Printed Systems and Nanosystems for Drug Delivery and Tissue Engineering
Author: Lisa C. du Toit
Publisher: Elsevier
ISBN: 0128184728
Category : Technology & Engineering
Languages : en
Pages : 318
Book Description
Advanced 3D-Printed Systems and Nanosystems for Drug Delivery and Tissue Engineering explores the intricacies of nanostructures and 3D printed systems in terms of their design as drug delivery or tissue engineering devices, their further evaluations and diverse applications. The book highlights the most recent advances in both nanosystems and 3D-printed systems for both drug delivery and tissue engineering applications. It discusses the convergence of biofabrication with nanotechnology, constructing a directional customizable biomaterial arrangement for promoting tissue regeneration, combined with the potential for controlled bioactive delivery. These discussions provide a new viewpoint for both biomaterials scientists and pharmaceutical scientists. - Shows how nanotechnology and 3D printing are being used to create systems which are intelligent, biomimetic and customizable to the patient - Explores the current generation of nanostructured 3D printed medical devices - Assesses the major challenges of using 3D printed nanosystems for the manufacture of new pharmaceuticals
Publisher: Elsevier
ISBN: 0128184728
Category : Technology & Engineering
Languages : en
Pages : 318
Book Description
Advanced 3D-Printed Systems and Nanosystems for Drug Delivery and Tissue Engineering explores the intricacies of nanostructures and 3D printed systems in terms of their design as drug delivery or tissue engineering devices, their further evaluations and diverse applications. The book highlights the most recent advances in both nanosystems and 3D-printed systems for both drug delivery and tissue engineering applications. It discusses the convergence of biofabrication with nanotechnology, constructing a directional customizable biomaterial arrangement for promoting tissue regeneration, combined with the potential for controlled bioactive delivery. These discussions provide a new viewpoint for both biomaterials scientists and pharmaceutical scientists. - Shows how nanotechnology and 3D printing are being used to create systems which are intelligent, biomimetic and customizable to the patient - Explores the current generation of nanostructured 3D printed medical devices - Assesses the major challenges of using 3D printed nanosystems for the manufacture of new pharmaceuticals
3D Printing of Pharmaceutical and Drug Delivery Devices
Author: Dimitrios A. Lamprou
Publisher: John Wiley & Sons
ISBN: 1119835976
Category : Science
Languages : en
Pages : 276
Book Description
3D Printing of Pharmaceutical and Drug Delivery Devices 3D Printing of Pharmaceutical and Drug Delivery Devices Discover the latest, fast-developing technology to help move towards more cost-effective, small-batch, decentralized manufacturing of personalized systems 3D printing has revolutionized manufacturing. Its precision and flexibility have enabled the large-scale production of materials and devices too complex for conventional industrial manufacturing. This has been particularly revolutionary in the field of pharmaceutical production, where 3D printing is being integrated into the manufacture of both drugs and drug delivery devices. It has never been more important for industry professionals to understand this form of production. 3D Printing of Pharmaceuticals and Drug Delivery Devices: Progress from Bench to Bedside offers a comprehensive overview of 3D printing technology and its pharmaceutical applications. It introduces readers to a world in which bespoke drug delivery systems developed for specific users or conditions is rapidly becoming a reality. Its detailed coverage of strategies and industrial processes incorporates the latest research and real-world experience of production. 3D Printing of Pharmaceuticals and Drug Delivery Devices: Progress from Bench to Bedside readers will also find: A multi-disciplinary authorial team of industry leaders Discussion of common technical and regulatory barriers and their possible solutions Far-ranging discussion of pharmaceutical applications across all sectors 3D Printing of Pharmaceuticals and Drug Delivery Devices: Progress from Bench to Bedside is essential reading for pharmaceutical industry professionals and researchers looking to occupy the leading edge.
Publisher: John Wiley & Sons
ISBN: 1119835976
Category : Science
Languages : en
Pages : 276
Book Description
3D Printing of Pharmaceutical and Drug Delivery Devices 3D Printing of Pharmaceutical and Drug Delivery Devices Discover the latest, fast-developing technology to help move towards more cost-effective, small-batch, decentralized manufacturing of personalized systems 3D printing has revolutionized manufacturing. Its precision and flexibility have enabled the large-scale production of materials and devices too complex for conventional industrial manufacturing. This has been particularly revolutionary in the field of pharmaceutical production, where 3D printing is being integrated into the manufacture of both drugs and drug delivery devices. It has never been more important for industry professionals to understand this form of production. 3D Printing of Pharmaceuticals and Drug Delivery Devices: Progress from Bench to Bedside offers a comprehensive overview of 3D printing technology and its pharmaceutical applications. It introduces readers to a world in which bespoke drug delivery systems developed for specific users or conditions is rapidly becoming a reality. Its detailed coverage of strategies and industrial processes incorporates the latest research and real-world experience of production. 3D Printing of Pharmaceuticals and Drug Delivery Devices: Progress from Bench to Bedside readers will also find: A multi-disciplinary authorial team of industry leaders Discussion of common technical and regulatory barriers and their possible solutions Far-ranging discussion of pharmaceutical applications across all sectors 3D Printing of Pharmaceuticals and Drug Delivery Devices: Progress from Bench to Bedside is essential reading for pharmaceutical industry professionals and researchers looking to occupy the leading edge.
Bioinspired and Biomimetic Materials for Drug Delivery
Author: Md Nurunnabi
Publisher: Woodhead Publishing
ISBN: 0128219491
Category : Medical
Languages : en
Pages : 338
Book Description
Bioinspired and Biomimetic Materials for Drug Delivery delves into the potential of bioinspired materials in drug delivery, detailing each material type and its latest developments. In the last decade, biomimetic and bioinspired materials and technology has garnered increased attention in drug delivery research. Various material types including polymer, small molecular, protein, peptide, cholesterol, polysaccharide, nano-crystal and hybrid materials are widely considered in drug delivery research. However, biomimetic and bioinspired materials and technology have shown promising results for use in therapeutics, due to their high biocompatibility and reduced immunogenicity. Such materials include dopamine, extracellular exosome, bile acids, ionic liquids, and red blood cell. This book covers each of these materials in detail, reviewing their potential and usage in drug delivery. As such, this book will be a great source of information for biomaterials scientists, biomedical engineers and those working in pharmaceutical research. - Explores latest developments for a broad range of bioinspired and biomimetic materials for drug delivery applications - Helps researchers overcome the challenges of biocompatibility and immunogenicity in drug development - Provides both theoretical and practical knowledge in regards to materials characterization and use in a range of drugs
Publisher: Woodhead Publishing
ISBN: 0128219491
Category : Medical
Languages : en
Pages : 338
Book Description
Bioinspired and Biomimetic Materials for Drug Delivery delves into the potential of bioinspired materials in drug delivery, detailing each material type and its latest developments. In the last decade, biomimetic and bioinspired materials and technology has garnered increased attention in drug delivery research. Various material types including polymer, small molecular, protein, peptide, cholesterol, polysaccharide, nano-crystal and hybrid materials are widely considered in drug delivery research. However, biomimetic and bioinspired materials and technology have shown promising results for use in therapeutics, due to their high biocompatibility and reduced immunogenicity. Such materials include dopamine, extracellular exosome, bile acids, ionic liquids, and red blood cell. This book covers each of these materials in detail, reviewing their potential and usage in drug delivery. As such, this book will be a great source of information for biomaterials scientists, biomedical engineers and those working in pharmaceutical research. - Explores latest developments for a broad range of bioinspired and biomimetic materials for drug delivery applications - Helps researchers overcome the challenges of biocompatibility and immunogenicity in drug development - Provides both theoretical and practical knowledge in regards to materials characterization and use in a range of drugs
3D Printing in Medicine
Author: Deepak M. Kalaskar
Publisher: Woodhead Publishing
ISBN: 0323902200
Category : Science
Languages : en
Pages : 424
Book Description
3D Printing in Medicine, Second Edition examines the rapidly growing market of 3D-printed biomaterials and their clinical applications. With a particular focus on both commercial and premarket tools, the book looks at their applications within medicine and the future outlook for the field. The chapters are written by field experts actively engaged in educational and research activities at the top universities in the world. The earlier chapters cover the fundamentals of 3D printing, including topics such as materials and hardware. The later chapters go on to cover innovative applications within medicine such as computational analysis of 3D printed constructs, personalized 3D printing - including 3D cell and organ printing and the role of AI - with a subsequent look at the applications of high-resolution printing, 3D printing in diagnostics, drug development, 4D printing, and much more. This updated new edition features completely revised content, with additional new chapters covering organs-on-chips, bioprinting regulations and standards, intellectual properties, and socio-ethical implications of organs-on-demand. - Reviews a broad range of biomedical applications of 3D printing biomaterials and technologies - Provides an interdisciplinary look at 3D printing in medicine, bridging the gap between engineering and clinical fields - Includes completely updated content with additional new chapters, covering topics such as organs-on-chips, bioprinting regulations, intellectual properties, medical standards in 3D printing, and more
Publisher: Woodhead Publishing
ISBN: 0323902200
Category : Science
Languages : en
Pages : 424
Book Description
3D Printing in Medicine, Second Edition examines the rapidly growing market of 3D-printed biomaterials and their clinical applications. With a particular focus on both commercial and premarket tools, the book looks at their applications within medicine and the future outlook for the field. The chapters are written by field experts actively engaged in educational and research activities at the top universities in the world. The earlier chapters cover the fundamentals of 3D printing, including topics such as materials and hardware. The later chapters go on to cover innovative applications within medicine such as computational analysis of 3D printed constructs, personalized 3D printing - including 3D cell and organ printing and the role of AI - with a subsequent look at the applications of high-resolution printing, 3D printing in diagnostics, drug development, 4D printing, and much more. This updated new edition features completely revised content, with additional new chapters covering organs-on-chips, bioprinting regulations and standards, intellectual properties, and socio-ethical implications of organs-on-demand. - Reviews a broad range of biomedical applications of 3D printing biomaterials and technologies - Provides an interdisciplinary look at 3D printing in medicine, bridging the gap between engineering and clinical fields - Includes completely updated content with additional new chapters, covering topics such as organs-on-chips, bioprinting regulations, intellectual properties, medical standards in 3D printing, and more
3D Printed Microfluidic Devices
Author: Savas Tasoglu
Publisher: MDPI
ISBN: 3038974676
Category : Technology & Engineering
Languages : en
Pages : 213
Book Description
This book is a printed edition of the Special Issue "3D Printed Microfluidic Devices" that was published in Micromachines
Publisher: MDPI
ISBN: 3038974676
Category : Technology & Engineering
Languages : en
Pages : 213
Book Description
This book is a printed edition of the Special Issue "3D Printed Microfluidic Devices" that was published in Micromachines
Polymeric Drug Delivery Systems
Author: Glen S. Kwon
Publisher: CRC Press
ISBN: 9780824725327
Category : Medical
Languages : en
Pages : 680
Book Description
Emphasizing four major classes of polymers for drug delivery-water-soluble polymers, hydrogels, biodegradable polymers, and polymer assemblies-this reference surveys efforts to adapt, modify, and tailor polymers for challenging molecules such as poorly water-soluble compounds, peptides/proteins, and plasmid DNA.
Publisher: CRC Press
ISBN: 9780824725327
Category : Medical
Languages : en
Pages : 680
Book Description
Emphasizing four major classes of polymers for drug delivery-water-soluble polymers, hydrogels, biodegradable polymers, and polymer assemblies-this reference surveys efforts to adapt, modify, and tailor polymers for challenging molecules such as poorly water-soluble compounds, peptides/proteins, and plasmid DNA.