3-D Structural Geology

3-D Structural Geology PDF Author: Richard H. Groshong
Publisher: Springer Science & Business Media
ISBN: 354031055X
Category : Science
Languages : en
Pages : 411

Get Book Here

Book Description
The book includes new material, in particular examples of 3-D models and techniques for using kinematic models to predict fault and ramp-anticline geometry. The book is geared toward the professional user concerned about the accuracy of an interpretation and the speed with which it can be obtained from incomplete data. Numerous analytical solutions are given that can be easily implemented with a pocket calculator or a spreadsheet.

3-D Structural Geology

3-D Structural Geology PDF Author: Richard H. Groshong
Publisher: Springer Science & Business Media
ISBN: 354031055X
Category : Science
Languages : en
Pages : 411

Get Book Here

Book Description
The book includes new material, in particular examples of 3-D models and techniques for using kinematic models to predict fault and ramp-anticline geometry. The book is geared toward the professional user concerned about the accuracy of an interpretation and the speed with which it can be obtained from incomplete data. Numerous analytical solutions are given that can be easily implemented with a pocket calculator or a spreadsheet.

Problems and Solutions in Structural Geology and Tectonics

Problems and Solutions in Structural Geology and Tectonics PDF Author:
Publisher: Elsevier
ISBN: 0128140496
Category : Science
Languages : en
Pages : 318

Get Book Here

Book Description
Problems and Solutions in Structural Geology and Tectonics, Volume 5, in the series Developments in Structural Geology and Tectonics, presents students, researchers and practitioners with an all-new set of problems and solutions that structural geologists and tectonics researchers commonly face. Topics covered include ductile deformation (such as strain analyses), brittle deformation (such as rock fracturing), brittle-ductile deformation, collisional and shortening tectonics, thrust-related exercises, rift and extensional tectonics, strike slip tectonics, and cross-section balancing exercises. The book provides a how-to guide for students of structural geology and geologists working in the oil, gas and mining industries. - Provides practical solutions to industry-related issues, such as well bore stability - Allows for self-study and includes background information and explanation of research and industry jargon - Includes full color diagrams to explain 3D issues

Rock Mechanics and Rock Engineering: From the Past to the Future

Rock Mechanics and Rock Engineering: From the Past to the Future PDF Author: Reşat Ulusay
Publisher: CRC Press
ISBN: 1315388480
Category : Technology & Engineering
Languages : en
Pages : 2044

Get Book Here

Book Description
Rock Mechanics and Rock Engineering: From the Past to the Future contains the contributions presented at EUROCK2016, the 2016 International Symposium of the International Society for Rock Mechanics (ISRM 2016, Ürgüp, Cappadocia Region, Turkey, 29-31 August 2016). The contributions cover almost all aspects of rock mechanics and rock engineering from theories to engineering practices, emphasizing the future direction of rock engineering technologies. The 204 accepted papers and eight keynote papers, are grouped into several main sections: - Fundamental rock mechanics - Rock properties and experimental rock mechanics - Analytical and numerical methods in rock engineering - Stability of slopes in civil and mining engineering - Design methodologies and analysis - Rock dynamics, rock mechanics and rock engineering at historical sites and monuments - Underground excavations in civil and mining engineering - Coupled processes in rock mass for underground storage and waste disposal - Rock mass characterization - Petroleum geomechanics - Carbon dioxide sequestration - Instrumentation-monitoring in rock engineering and back analysis - Risk management, and - the 2016 Rocha Medal Lecture and the 2016 Franklin Lecture Rock Mechanics and Rock Engineering: From the Past to the Future will be of interest to researchers and professionals involved in the various branches of rock mechanics and rock engineering. EUROCK 2016, organized by the Turkish National Society for Rock Mechanics, is a continuation of the successful series of ISRM symposia in Europe, which began in 1992 in Chester, UK.

Fault-related Deformation Over Geologic Time

Fault-related Deformation Over Geologic Time PDF Author: Peter James Lovely
Publisher: Stanford University
ISBN:
Category :
Languages : en
Pages : 265

Get Book Here

Book Description
A thorough understanding of the kinematic and mechanical evolution of fault-related structures is of great value, both academic (e.g. How do mountains form?) and practical (e.g. How are valuable hydrocarbons trapped in fault-related folds?). Precise knowledge of the present-day geometry is necessary to know where to drill for hydrocarbons. Understanding the evolution of a structure, including displacement fields, strain and stress history, may offer powerful insights to how and if hydrocarbons might have migrated, and the most efficient way to extract them. Small structures, including faults, fractures, pressure solution seams, and localized compaction, which may strongly influence subsurface fluid flow, may be predictable with a detailed mechanical understanding of a structure's evolution. The primary focus of this thesis is the integration of field observations, geospatial data including airborne LiDAR, and numerical modeling to investigate three dimensional deformational patterns associated with fault slip accumulated over geologic time scales. The work investigates contractional tectonics at Sheep Mountain anticline, Greybull, WY, and extensional tectonics at the Volcanic Tableland, Bishop, CA. A detailed geometric model is a necessary prerequisite for complete kinematic or mechanical analysis of any structure. High quality 3D seismic imaging data provides the means to characterize fold geometry for many subsurface industrial applications; however, such data is expensive, availability is limited, and data quality is often poor in regions of high topography where outcrop exposures are best. A new method for using high resolution topographic data, geologic field mapping and numerical interpolation is applied to model the 3D geometry of a reservoir-scale fold at Sheep Mountain anticline. The Volcanic Tableland is a classic field site for studies of fault slip scaling relationships and conceptual models for evolution of normal faults. Three dimensional elastic models are used to constrain subsurface fault geometry from detailed maps of fault scarps and topography, and to reconcile two potentially competing conceptual models for fault growth: by coalescence and by subsidiary faulting. The Tableland fault array likely initiated as a broad array of small faults, and as some have grown and coalesced, their strain shadows have inhibited the growth and initiation of nearby faults. The Volcanic Tableland also is used as a geologic example in a study of the capabilities and limitations of mechanics-based restoration, a relatively new approach to modeling in structural geology that provides distinct advantages over traditional kinematic methods, but that is significantly hampered by unphysical boundary conditions. The models do not accurately represent geological strain and stress distributions, as many have hoped. A new mechanics-based retrodeformational technique that is not subject to the same unphysical boundary conditions is suggested. However, the method, which is based on reversal of tectonic loads that may be optimized by paleostress analysis, restores only that topography which may be explained by an idealized elastic model. Elastic models are appealing for mechanical analysis of fault-related deformation because the linear nature of such models lends itself to retrodeformation and provides computationally efficient and stable numerical implementation for simulating slip distributions and associated deformation in complicated 3D fault systems. However, cumulative rock deformation is not elastic. Synthetic models are applied to investigate the implications of assuming elastic deformation and frictionless fault slip, as opposed to a more realistic elasto-plastic deformation with frictional fault slip. Results confirm that elastic models are limited in their ability to simulate geologic stress distributions, but that they may provide a reasonable, first-order approximation of strain tensor orientation and the distribution of relative strain perturbations, particularly distal from fault tips. The kinematics of elastic and elasto-plastic models diverge in the vicinity of fault tips. Results emphasize the importance of accurately and completely representing subsurface fault geometry in linear or nonlinear models.

Shared Earth Modeling

Shared Earth Modeling PDF Author: Michel Perrin
Publisher: Editions TECHNIP
ISBN: 9782710810025
Category : Technology & Engineering
Languages : en
Pages : 428

Get Book Here

Book Description
Over the last two decades, earth modeling has become a major investigative tool for evaluating the potential of hydrocarbon reservoirs. Earth modelling must now face new challenges since petroleum exploration no longer consists in only investigating newly identified resources, but also in re-evaluating the potential of previously investigated reservoirs in the light of new prospecting data and of revised interpretations. Earth models incorporate a variety of different interpretations made on various types of data at successive steps of the modeling process. However, current modeling procedures provide no way to link a range of data and interpretations with a final earth model. For this reason, sharing and exchanging information about the model building process is at present a major difficulty. Recently, the term “Shared Earth Modeling” has been used for expressing the idea that earth models should be built in such a way that experts and end users can have access, at any time, to all the information incorporated into the model. This information does not only concern the data, but also the knowledge that geoscientists produce by interpreting these data. Accordingly, practical solutions must be studied for operating a knowledge-driven approach of Shared Earth Modeling. This is the goal of this book. This study of earth subsurface modeling is intended for several categories of readers. It concerns in the first place geologists, engineers and managers involved in the study and evaluation of subsurface reservoirs and hydrocarbon exploration. Relying on recent progress in various fields of computer sciences, the authors present innovative solutions for solving the critical issue of knowledge exchange at key steps of the modeling process. This book will also be of interest to researchers in computer science and, more generally, to engineers, researchers and students who wish to apply advanced knowledge-based techniques to complex engineering problems. Contents : Part I. Earth Models. 1. Earth models as subsurface representations. 2. Earth models for underground resource exploration and estimation. 3. Earth models used in petroleum industry: current practice and future challenges. Part II. Knowledge oriented solutions. 4. Knowledge based approach of a data intensive problem: seismic interpretation. 5. Individual surface representations and optimization. 6. Geological surface assemblage. 7. 3D Meshes for structural, stratigraphy and reservoir frameworks. 8. The data extension issue: geological constraints applied in geostatistical processes. Part III. Knowledge formalization. 9. Ontologies and their use for geological knowledge formalization. 10. Ontologies for Interpreting geochronological relationships. 11. Building ontologies for analyzing data expressed in natural language. 12. Ontology-based rock description and interpretation. Part IV. Knowledge management & applications. 13. Ontology integration and management within data intensive engineering systems. 14. Earth modeling using web services. 15. Full scale example of a knowledge-based method for building and managing an earth model. Part V. Conclusion. Appendix. Glossary.

Interdisciplinary Approaches for Sustainable Development Goals

Interdisciplinary Approaches for Sustainable Development Goals PDF Author: Tymon Zielinski
Publisher: Springer
ISBN: 331971788X
Category : Science
Languages : en
Pages : 246

Get Book Here

Book Description
This book discusses the impacts of climate change that are already being felt on every continent and provides the scientific basis for a number of modern approaches and state-of-the art methods for monitoring the environment, social behavior and human expectations concerning protection of the environment. The book approaches these issues from the perspectives of various disciplines, from physics to the social sciences, and highlights both current challenges and future prospects. On 1 January 2016, the 17 Sustainable Development Goals (SDGs) defined in the 2030 Agenda for Sustainable Development – 12 of which involve taking action on climate change – officially came into force. To achieve sustainable development, it is and will remain crucial to harmonize three interconnected core elements: economic growth, social inclusion and environmental protection.

Digital Terrain Analysis in Soil Science and Geology

Digital Terrain Analysis in Soil Science and Geology PDF Author: Igor Florinsky
Publisher: Academic Press
ISBN: 0128046333
Category : Science
Languages : en
Pages : 508

Get Book Here

Book Description
Digital Terrain Analysis in Soil Science and Geology, Second Edition, synthesizes the knowledge on methods and applications of digital terrain analysis and geomorphometry in the context of multi-scale problems in soil science and geology. Divided into three parts, the book first examines main concepts, principles, and methods of digital terrain modeling. It then looks at methods for analysis, modeling, and mapping of spatial distribution of soil properties using digital terrain analysis, before finally considering techniques for recognition, analysis, and interpretation of topographically manifested geological features. Digital Terrain Analysis in Soil Science and Geology, Second Edition, is an updated and revised edition, providing both a theoretical and methodological basis for understanding and applying geographical modeling techniques. - Presents an integrated and unified view of digital terrain analysis in both soil science and geology - Features research on new advances in the field, including DEM analytical approximation, analytical calculation of local morphometric variables, morphometric globes, and two-dimensional generalized spectral analytical methods - Includes a rigorous description of the mathematical principles of digital terrain analysis - Provides both a theoretical and methodological basis for understanding and applying geographical modeling

3D, 4D and Predictive Modelling of Major Mineral Belts in Europe

3D, 4D and Predictive Modelling of Major Mineral Belts in Europe PDF Author: Pär Weihed
Publisher: Springer
ISBN: 3319174282
Category : Science
Languages : en
Pages : 330

Get Book Here

Book Description
This book presents the results of the major EU project Promine. For the first time there is now a European database available on mineral deposits, as well as 3D, 4D and predictive models of major mineral belts in Europe: Fennoscandia (Skellefteå and Vihanti-Pyhäsalmi), the Fore-Sudetic basin (Kupferschiefer deposits in Poland and Germany), the Hellenic belt in northern Greece, and the Iberian Pyrite belt and Ossa Morena zone in Spain and Portugal. The book also describes the modelling techniques applied and how different types of software are used for three- and four-dimensional modelling. Furthermore, fundamental descriptions of how to build the database structure of three-dimensional geological data are provided and both 2D and 3D predictive models are presented for the main mineral belts of Europe.

Structural Geology

Structural Geology PDF Author: A.R. Bhattacharya
Publisher: Springer Nature
ISBN: 3030807959
Category : Science
Languages : en
Pages : 473

Get Book Here

Book Description
This textbook is a complete, up-to-date, and highly illustrated account of Structural Geology for students and professionals, and includes fundamentals of the subject with field and practical aspects. The book aims to be highly reader-friendly, containing simple language and brief introductions and summaries for each topic presented, and can be used both to refresh overall knowledge of the subject as well as to develop models for engineering projects in any area or region. The book is presented in 20 chapters and divided into 3 parts: (A) Fundamental Concepts, (B) Structures: Geometry and Genesis, and (C) Wider Perspectives. For the first time as full chapters in a textbook, the book discusses several modern field-related applications in Structural Geology, including shear-sense indicators, and deformation and metamorphism. Also uniquely included are colored photographs, side by side with line diagrams, of key deformation structures not seen in other books before now. Boxes in each chapter expand the horizons of the reader on the subject matter of the chapter. Questions at the end of each chapter, and detailed significance of the key structures, provide a better grasping to students. Glossary at the end of the book is a refreshing aspect for the readers. Though written primarily for undergraduate and graduate students, the text will also be of use to specialists and practitioners in engineering geology, petrology (igneous, sedimentary, and metamorphic), economic geology, groundwater geology, petroleum geology, and geophysics, and will appeal to beginners with no preliminary knowledge of the subject.

Uranium, Mining and Hydrogeology

Uranium, Mining and Hydrogeology PDF Author: Broder J. Merkel
Publisher: Springer Science & Business Media
ISBN: 3540877460
Category : Science
Languages : en
Pages : 977

Get Book Here

Book Description
Subject of the book is Uranium and its migration in aquatic environments. The following subjects are emphasised: Uranium mining, Phosphate mining, mine closure and remediation, Uranium in groundwater and in bedrock, biogeochemistry of Uranium, environmental behavior, and modeling. Particular results from the leading edge of international research are presented.