Author: Laura Ruotsalainen
Publisher: Artech House
ISBN: 1630819689
Category : Technology & Engineering
Languages : en
Pages : 213
Book Description
The Present and Future of Indoor Navigation provides a complete overview of the latest indoor navigation technologies, algorithms, and systems. It begins by discussing various types of sensors that can be used for indoor navigation, such as accelerometers, gyroscopes, barometers, magnetometers, and cameras. It covers the numerous algorithms that can be used to compute the navigation solution, including Kalman filtering, particle filtering, and machine learning. Also, it discusses the system implementation considerations for indoor navigation, such as infrastructure, data fusion, and security. The book’s focus is on present technologies and algorithms, as well as providing a look into the future possibilities for indoor navigation, making it a great resource for a wide audience. This includes researchers, engineers, and students who are interested in indoor navigation. It is also a valuable resource for anyone who wants to learn more about the latest technologies and algorithms for indoor navigation.
The Present and Future of Indoor Navigation
Author: Laura Ruotsalainen
Publisher: Artech House
ISBN: 1630819689
Category : Technology & Engineering
Languages : en
Pages : 213
Book Description
The Present and Future of Indoor Navigation provides a complete overview of the latest indoor navigation technologies, algorithms, and systems. It begins by discussing various types of sensors that can be used for indoor navigation, such as accelerometers, gyroscopes, barometers, magnetometers, and cameras. It covers the numerous algorithms that can be used to compute the navigation solution, including Kalman filtering, particle filtering, and machine learning. Also, it discusses the system implementation considerations for indoor navigation, such as infrastructure, data fusion, and security. The book’s focus is on present technologies and algorithms, as well as providing a look into the future possibilities for indoor navigation, making it a great resource for a wide audience. This includes researchers, engineers, and students who are interested in indoor navigation. It is also a valuable resource for anyone who wants to learn more about the latest technologies and algorithms for indoor navigation.
Publisher: Artech House
ISBN: 1630819689
Category : Technology & Engineering
Languages : en
Pages : 213
Book Description
The Present and Future of Indoor Navigation provides a complete overview of the latest indoor navigation technologies, algorithms, and systems. It begins by discussing various types of sensors that can be used for indoor navigation, such as accelerometers, gyroscopes, barometers, magnetometers, and cameras. It covers the numerous algorithms that can be used to compute the navigation solution, including Kalman filtering, particle filtering, and machine learning. Also, it discusses the system implementation considerations for indoor navigation, such as infrastructure, data fusion, and security. The book’s focus is on present technologies and algorithms, as well as providing a look into the future possibilities for indoor navigation, making it a great resource for a wide audience. This includes researchers, engineers, and students who are interested in indoor navigation. It is also a valuable resource for anyone who wants to learn more about the latest technologies and algorithms for indoor navigation.
Machine Learning for Indoor Localization and Navigation
Author: Saideep Tiku
Publisher: Springer Nature
ISBN: 3031267125
Category : Technology & Engineering
Languages : en
Pages : 563
Book Description
While GPS is the de-facto solution for outdoor positioning with a clear sky view, there is no prevailing technology for GPS-deprived areas, including dense city centers, urban canyons, buildings and other covered structures, and subterranean facilities such as underground mines, where GPS signals are severely attenuated or totally blocked. As an alternative to GPS for the outdoors, indoor localization using machine learning is an emerging embedded and Internet of Things (IoT) application domain that is poised to reinvent the way we navigate in various indoor environments. This book discusses advances in the applications of machine learning that enable the localization and navigation of humans, robots, and vehicles in GPS-deficient environments. The book explores key challenges in the domain, such as mobile device resource limitations, device heterogeneity, environmental uncertainties, wireless signal variations, and security vulnerabilities. Countering these challenges can improve the accuracy, reliability, predictability, and energy-efficiency of indoor localization and navigation. The book identifies severalnovel energy-efficient, real-time, and robust indoor localization techniques that utilize emerging deep machine learning and statistical techniques to address the challenges for indoor localization and navigation. In particular, the book: Provides comprehensive coverage of the application of machine learning to the domain of indoor localization; Presents techniques to adapt and optimize machine learning models for fast, energy-efficient indoor localization; Covers design and deployment of indoor localization frameworks on mobile, IoT, and embedded devices in real conditions.
Publisher: Springer Nature
ISBN: 3031267125
Category : Technology & Engineering
Languages : en
Pages : 563
Book Description
While GPS is the de-facto solution for outdoor positioning with a clear sky view, there is no prevailing technology for GPS-deprived areas, including dense city centers, urban canyons, buildings and other covered structures, and subterranean facilities such as underground mines, where GPS signals are severely attenuated or totally blocked. As an alternative to GPS for the outdoors, indoor localization using machine learning is an emerging embedded and Internet of Things (IoT) application domain that is poised to reinvent the way we navigate in various indoor environments. This book discusses advances in the applications of machine learning that enable the localization and navigation of humans, robots, and vehicles in GPS-deficient environments. The book explores key challenges in the domain, such as mobile device resource limitations, device heterogeneity, environmental uncertainties, wireless signal variations, and security vulnerabilities. Countering these challenges can improve the accuracy, reliability, predictability, and energy-efficiency of indoor localization and navigation. The book identifies severalnovel energy-efficient, real-time, and robust indoor localization techniques that utilize emerging deep machine learning and statistical techniques to address the challenges for indoor localization and navigation. In particular, the book: Provides comprehensive coverage of the application of machine learning to the domain of indoor localization; Presents techniques to adapt and optimize machine learning models for fast, energy-efficient indoor localization; Covers design and deployment of indoor localization frameworks on mobile, IoT, and embedded devices in real conditions.
Proceedings of the Fifth International Conference on Emerging Trends in Mathematical Sciences & Computing (IEMSC-24)
Author: Biswadip Basu Mallik
Publisher: Springer Nature
ISBN: 3031711254
Category :
Languages : en
Pages : 575
Book Description
Publisher: Springer Nature
ISBN: 3031711254
Category :
Languages : en
Pages : 575
Book Description
Proceedings of the International Conference on Machine Learning, Deep Learning and Computational Intelligence for Wireless Communication
Author: E. S. Gopi
Publisher: Springer Nature
ISBN: 3031479424
Category :
Languages : en
Pages : 630
Book Description
Publisher: Springer Nature
ISBN: 3031479424
Category :
Languages : en
Pages : 630
Book Description
Proceedings of ELM 2021
Author: Kaj-Mikael Björk
Publisher: Springer Nature
ISBN: 3031216784
Category : Technology & Engineering
Languages : en
Pages : 179
Book Description
This book contains papers from the International Conference on Extreme Learning Machine 2021, which was held in virtual on December 15–16, 2021. Extreme learning machines (ELM) aims to enable pervasive learning and pervasive intelligence. As advocated by ELM theories, it is exciting to see the convergence of machine learning and biological learning from the long-term point of view. ELM may be one of the fundamental `learning particles’ filling the gaps between machine learning and biological learning (of which activation functions are even unknown). ELM represents a suite of (machine and biological) learning techniques in which hidden neurons need not be tuned: inherited from their ancestors or randomly generated. ELM learning theories show that effective learning algorithms can be derived based on randomly generated hidden neurons (biological neurons, artificial neurons, wavelets, Fourier series, etc.) as long as they are nonlinear piecewise continuous, independent of training data and application environments. Increasingly, evidence from neuroscience suggests that similar principles apply in biological learning systems. ELM theories and algorithms argue that “random hidden neurons” capture an essential aspect of biological learning mechanisms as well as the intuitive sense that the efficiency of biological learning need not rely on computing power of neurons. ELM theories thus hint at possible reasons why the brain is more intelligent and effective than current computers. This conference provides a forum for academics, researchers, and engineers to share and exchange R&D experience on both theoretical studies and practical applications of the ELM technique and brain learning. This book covers theories, algorithms, and applications of ELM. It gives readers a glance of the most recent advances of ELM.
Publisher: Springer Nature
ISBN: 3031216784
Category : Technology & Engineering
Languages : en
Pages : 179
Book Description
This book contains papers from the International Conference on Extreme Learning Machine 2021, which was held in virtual on December 15–16, 2021. Extreme learning machines (ELM) aims to enable pervasive learning and pervasive intelligence. As advocated by ELM theories, it is exciting to see the convergence of machine learning and biological learning from the long-term point of view. ELM may be one of the fundamental `learning particles’ filling the gaps between machine learning and biological learning (of which activation functions are even unknown). ELM represents a suite of (machine and biological) learning techniques in which hidden neurons need not be tuned: inherited from their ancestors or randomly generated. ELM learning theories show that effective learning algorithms can be derived based on randomly generated hidden neurons (biological neurons, artificial neurons, wavelets, Fourier series, etc.) as long as they are nonlinear piecewise continuous, independent of training data and application environments. Increasingly, evidence from neuroscience suggests that similar principles apply in biological learning systems. ELM theories and algorithms argue that “random hidden neurons” capture an essential aspect of biological learning mechanisms as well as the intuitive sense that the efficiency of biological learning need not rely on computing power of neurons. ELM theories thus hint at possible reasons why the brain is more intelligent and effective than current computers. This conference provides a forum for academics, researchers, and engineers to share and exchange R&D experience on both theoretical studies and practical applications of the ELM technique and brain learning. This book covers theories, algorithms, and applications of ELM. It gives readers a glance of the most recent advances of ELM.
Computational Science – ICCS 2021
Author: Maciej Paszynski
Publisher: Springer Nature
ISBN: 3030779645
Category : Computers
Languages : en
Pages : 609
Book Description
The six-volume set LNCS 12742, 12743, 12744, 12745, 12746, and 12747 constitutes the proceedings of the 21st International Conference on Computational Science, ICCS 2021, held in Krakow, Poland, in June 2021.* The total of 260 full papers and 57 short papers presented in this book set were carefully reviewed and selected from 635 submissions. 48 full and 14 short papers were accepted to the main track from 156 submissions; 212 full and 43 short papers were accepted to the workshops/ thematic tracks from 479 submissions. The papers were organized in topical sections named: Part I: ICCS Main Track Part II: Advances in High-Performance Computational Earth Sciences: Applications and Frameworks; Applications of Computational Methods in Artificial Intelligence and Machine Learning; Artificial Intelligence and High-Performance Computing for Advanced Simulations; Biomedical and Bioinformatics Challenges for Computer Science Part III: Classifier Learning from Difficult Data; Computational Analysis of Complex Social Systems; Computational Collective Intelligence; Computational Health Part IV: Computational Methods for Emerging Problems in (dis-)Information Analysis; Computational Methods in Smart Agriculture; Computational Optimization, Modelling and Simulation; Computational Science in IoT and Smart Systems Part V: Computer Graphics, Image Processing and Artificial Intelligence; Data-Driven Computational Sciences; Machine Learning and Data Assimilation for Dynamical Systems; MeshFree Methods and Radial Basis Functions in Computational Sciences; Multiscale Modelling and Simulation Part VI: Quantum Computing Workshop; Simulations of Flow and Transport: Modeling, Algorithms and Computation; Smart Systems: Bringing Together Computer Vision, Sensor Networks and Machine Learning; Software Engineering for Computational Science; Solving Problems with Uncertainty; Teaching Computational Science; Uncertainty Quantification for Computational Models *The conference was held virtually. Chapter “Effective Solution of Ill-posed Inverse Problems with Stabilized Forward Solver” is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
Publisher: Springer Nature
ISBN: 3030779645
Category : Computers
Languages : en
Pages : 609
Book Description
The six-volume set LNCS 12742, 12743, 12744, 12745, 12746, and 12747 constitutes the proceedings of the 21st International Conference on Computational Science, ICCS 2021, held in Krakow, Poland, in June 2021.* The total of 260 full papers and 57 short papers presented in this book set were carefully reviewed and selected from 635 submissions. 48 full and 14 short papers were accepted to the main track from 156 submissions; 212 full and 43 short papers were accepted to the workshops/ thematic tracks from 479 submissions. The papers were organized in topical sections named: Part I: ICCS Main Track Part II: Advances in High-Performance Computational Earth Sciences: Applications and Frameworks; Applications of Computational Methods in Artificial Intelligence and Machine Learning; Artificial Intelligence and High-Performance Computing for Advanced Simulations; Biomedical and Bioinformatics Challenges for Computer Science Part III: Classifier Learning from Difficult Data; Computational Analysis of Complex Social Systems; Computational Collective Intelligence; Computational Health Part IV: Computational Methods for Emerging Problems in (dis-)Information Analysis; Computational Methods in Smart Agriculture; Computational Optimization, Modelling and Simulation; Computational Science in IoT and Smart Systems Part V: Computer Graphics, Image Processing and Artificial Intelligence; Data-Driven Computational Sciences; Machine Learning and Data Assimilation for Dynamical Systems; MeshFree Methods and Radial Basis Functions in Computational Sciences; Multiscale Modelling and Simulation Part VI: Quantum Computing Workshop; Simulations of Flow and Transport: Modeling, Algorithms and Computation; Smart Systems: Bringing Together Computer Vision, Sensor Networks and Machine Learning; Software Engineering for Computational Science; Solving Problems with Uncertainty; Teaching Computational Science; Uncertainty Quantification for Computational Models *The conference was held virtually. Chapter “Effective Solution of Ill-posed Inverse Problems with Stabilized Forward Solver” is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
Wireless Artificial Intelligent Computing Systems and Applications
Author: Zhipeng Cai
Publisher: Springer Nature
ISBN: 3031714644
Category :
Languages : en
Pages : 540
Book Description
Publisher: Springer Nature
ISBN: 3031714644
Category :
Languages : en
Pages : 540
Book Description
HCI International 2021 - Posters
Author: Constantine Stephanidis
Publisher: Springer Nature
ISBN: 3030786420
Category : Computers
Languages : en
Pages : 614
Book Description
The three-volume set CCIS 1419, CCIS 1420, and CCIS 1421 contains the extended abstracts of the posters presented during the 23rd International Conference on Human-Computer Interaction, HCII 2021, which was held virtually in July 2021. The total of 1276 papers and 241 posters included in the 39 HCII 2021 proceedings volumes was carefully reviewed and selected from 5222 submissions. The posters presented in these three volumes are organized in topical sections as follows: Part I: HCI theory and methods; perceptual, cognitive and psychophisiological aspects of interaction; designing for children; designing for older people; design case studies; dimensions of user experience; information, language, culture and media. Part II: interaction methods and techniques; eye-tracking and facial expressions recognition; human-robot interaction; virtual, augmented and mixed reality; security and privacy issues in HCI; AI and machine learning in HCI. Part III: interacting and learning; interacting and playing; interacting and driving; digital wellbeing, eHealth and mHealth; interacting and shopping; HCI, safety and sustainability; HCI in the time of pandemic.
Publisher: Springer Nature
ISBN: 3030786420
Category : Computers
Languages : en
Pages : 614
Book Description
The three-volume set CCIS 1419, CCIS 1420, and CCIS 1421 contains the extended abstracts of the posters presented during the 23rd International Conference on Human-Computer Interaction, HCII 2021, which was held virtually in July 2021. The total of 1276 papers and 241 posters included in the 39 HCII 2021 proceedings volumes was carefully reviewed and selected from 5222 submissions. The posters presented in these three volumes are organized in topical sections as follows: Part I: HCI theory and methods; perceptual, cognitive and psychophisiological aspects of interaction; designing for children; designing for older people; design case studies; dimensions of user experience; information, language, culture and media. Part II: interaction methods and techniques; eye-tracking and facial expressions recognition; human-robot interaction; virtual, augmented and mixed reality; security and privacy issues in HCI; AI and machine learning in HCI. Part III: interacting and learning; interacting and playing; interacting and driving; digital wellbeing, eHealth and mHealth; interacting and shopping; HCI, safety and sustainability; HCI in the time of pandemic.
Positioning and Navigation Using Machine Learning Methods
Author: Kegen Yu
Publisher: Springer Nature
ISBN: 9819761999
Category :
Languages : en
Pages : 378
Book Description
Publisher: Springer Nature
ISBN: 9819761999
Category :
Languages : en
Pages : 378
Book Description
Computational Science and Its Applications – ICCSA 2021
Author: Osvaldo Gervasi
Publisher: Springer Nature
ISBN: 3030869768
Category : Computers
Languages : en
Pages : 762
Book Description
The ten-volume set LNCS 12949 – 12958 constitutes the proceedings of the 21st International Conference on Computational Science and Its Applications, ICCSA 2021, which was held in Cagliari, Italy, during September 13 – 16, 2021. The event was organized in a hybrid mode due to the Covid-19 pandemic.The 466 full and 18 short papers presented in these proceedings were carefully reviewed and selected from 1588 submissions. The books cover such topics as multicore architectures, computational astrochemistry, mobile and wireless security, sensor networks, open source software, collaborative and social computing systems and tools, computational geometry, applied mathematics human computer interaction, software design engineering, and others. Part V of the set includes the the proceedings on the following workshops: International Workshop on Computational Geometry and Applications (CGA 2021); International Workshop on Collaborative Intelligence in Multimodal Applications (CIMA 2021); International Workshop on Computational Science and HPC (CSHPC 2021); International Workshop on Computational Optimization and Applications (COA 2021); International Workshop on Cities, Technologies and Planning (CTP 2021); International Workshop on Computational Astrochemistry (CompAstro 2021); International Workshop on Advanced Modeling E-Mobility in Urban Spaces (DEMOS 2021).The chapters "On Local Convergence of Stochastic Global Optimization Algorithms" and "Computing Binding Energies of Interstellar Molecules by Semiempirical Quantum Methods: Comparison between DFT and GFN2 on Crystalline Ice" are published open access under a CC BY license (Creative Commons Attribution 4.0 International License).
Publisher: Springer Nature
ISBN: 3030869768
Category : Computers
Languages : en
Pages : 762
Book Description
The ten-volume set LNCS 12949 – 12958 constitutes the proceedings of the 21st International Conference on Computational Science and Its Applications, ICCSA 2021, which was held in Cagliari, Italy, during September 13 – 16, 2021. The event was organized in a hybrid mode due to the Covid-19 pandemic.The 466 full and 18 short papers presented in these proceedings were carefully reviewed and selected from 1588 submissions. The books cover such topics as multicore architectures, computational astrochemistry, mobile and wireless security, sensor networks, open source software, collaborative and social computing systems and tools, computational geometry, applied mathematics human computer interaction, software design engineering, and others. Part V of the set includes the the proceedings on the following workshops: International Workshop on Computational Geometry and Applications (CGA 2021); International Workshop on Collaborative Intelligence in Multimodal Applications (CIMA 2021); International Workshop on Computational Science and HPC (CSHPC 2021); International Workshop on Computational Optimization and Applications (COA 2021); International Workshop on Cities, Technologies and Planning (CTP 2021); International Workshop on Computational Astrochemistry (CompAstro 2021); International Workshop on Advanced Modeling E-Mobility in Urban Spaces (DEMOS 2021).The chapters "On Local Convergence of Stochastic Global Optimization Algorithms" and "Computing Binding Energies of Interstellar Molecules by Semiempirical Quantum Methods: Comparison between DFT and GFN2 on Crystalline Ice" are published open access under a CC BY license (Creative Commons Attribution 4.0 International License).