X-ray Radiography and Scattering Diagnosis of Dense Shock-Compressed Matter

X-ray Radiography and Scattering Diagnosis of Dense Shock-Compressed Matter PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 18

Get Book Here

Book Description
Highly coupled Boron plasma has been probed by spectrally resolving an x-ray source scattered by the plasma. Electron density was inferred from the inelastic feature in the collective scattering regime. In addition, the mass density inferred from the non-collective X-ray Thomson scattering has been tested with independent characterization using X-ray radiography in the same drive condition. High-intensity laser produced K-alpha radiation was used as a backlighter for these dynamically compressed plasma experiments providing a high temporal resolution of the measurements. Mass density measurements from both methods are in good agreement. The measurements yield a compression of 1.3 in agreement with detailed radiation-hydrodynamic modeling. From the charge state measured in the non-collective regime and the electron density measured in the collective regime the mass density can then be constrained to 3.15 ± 0.16.

X-ray Radiography and Scattering Diagnosis of Dense Shock-Compressed Matter

X-ray Radiography and Scattering Diagnosis of Dense Shock-Compressed Matter PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 18

Get Book Here

Book Description
Highly coupled Boron plasma has been probed by spectrally resolving an x-ray source scattered by the plasma. Electron density was inferred from the inelastic feature in the collective scattering regime. In addition, the mass density inferred from the non-collective X-ray Thomson scattering has been tested with independent characterization using X-ray radiography in the same drive condition. High-intensity laser produced K-alpha radiation was used as a backlighter for these dynamically compressed plasma experiments providing a high temporal resolution of the measurements. Mass density measurements from both methods are in good agreement. The measurements yield a compression of 1.3 in agreement with detailed radiation-hydrodynamic modeling. From the charge state measured in the non-collective regime and the electron density measured in the collective regime the mass density can then be constrained to 3.15 ± 0.16.

Frontiers and Challenges in Warm Dense Matter

Frontiers and Challenges in Warm Dense Matter PDF Author: Frank Graziani
Publisher: Springer Science & Business
ISBN: 3319049127
Category : Computers
Languages : en
Pages : 294

Get Book Here

Book Description
Warm Dense Matter (WDM) occupies a loosely defined region of phase space intermediate between solid, liquid, gas, and plasma, and typically shares characteristics of two or more of these phases. WDM is generally associated with the combination of strongly coupled ions and moderately degenerate electrons, and careful attention to quantum physics and electronic structure is essential. The lack of a small perturbation parameter greatly limits approximate attempts at its accurate description. Since WDM resides at the intersection of solid state and high energy density physics, many high energy density physics (HEDP) experiments pass through this difficult region of phase space. Thus, understanding and modeling WDM is key to the success of experiments on diverse facilities. These include the National Ignition Campaign centered on the National Ignition Facility (NIF), pulsed-power driven experiments on the Z machine, ion-beam-driven WDM experiments on the NDCX-II, and fundamental WDM research at the Linear Coherent Light Source (LCLS). Warm Dense Matter is also ubiquitous in planetary science and astrophysics, particularly with respect to unresolved questions concerning the structure and age of the gas giants, the nature of exosolar planets, and the cosmochronology of white dwarf stars. In this book we explore established and promising approaches to the modeling of WDM, foundational issues concerning the correct theoretical description of WDM, and the challenging practical issues of numerically modeling strongly coupled systems with many degrees of freedom.

Plasma Scattering of Electromagnetic Radiation

Plasma Scattering of Electromagnetic Radiation PDF Author: John Sheffield
Publisher: Academic Press
ISBN: 0080952038
Category : Science
Languages : en
Pages : 512

Get Book Here

Book Description
This work presents one of the most powerful methods of plasma diagnosis in exquisite detail, to guide researchers in the theory and measurement techniques of light scattering in plasmas. Light scattering in plasmas is essential in the research and development of fusion energy, environmental solutions, and electronics.Referred to as the "Bible" by researchers, the work encompasses fusion and industrial applications essential in plasma research. It is the only comprehensive resource specific to the plasma scattering technique. It provides a wide-range of experimental examples and discussion of their principles with worked examples to assist researchers in applying the theory. - Computing techniques for solving basic equations helps researchers compare data to the actual experiment - New material on advances on the experimental side, such as the application of high density plasmas of inertial fusion - Worked out examples of the scattering technique for easier comprehension of theory

Ultra-fast X-ray Thomson Scattering Measurements of Insulator-metal Transition in Shock-compressed Matter

Ultra-fast X-ray Thomson Scattering Measurements of Insulator-metal Transition in Shock-compressed Matter PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 5

Get Book Here

Book Description
Spectrally resolved scattering of ultra-short pulse laser-generated K-[alpha] x rays has been applied to measure the heating and compression of shocked solid-density lithium hydride. Two shocks launched by a nanosecond laser pulse coalesce yielding pressures of 400 gigapascals. The evolution of the intensity of the elastic (Rayleigh) scattering component indicates rapid heating to temperatures of 25,000 K on a 100 ps time scale. At shock coalescence, the scattering spectra show the collective plasmon oscillations indicating the transition to the dense metallic plasma state. The plasmon frequency determines the material compression, which is found to be a factor of three thereby reaching conditions in the laboratory important for studying astrophysics phenomena.

Ultrafast K-[alpha] X-ray Thomson Scattering from Shock Compressed Lithium Hydride

Ultrafast K-[alpha] X-ray Thomson Scattering from Shock Compressed Lithium Hydride PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 11

Get Book Here

Book Description
Spectrally and temporally resolved x ray Thomson scattering using ultrafast Ti K-[alpha] x-rays has provided experimental validation for modeling of the compression and heating of shocked matter. The coalescence of two shocks launched into a solid density LiH target by a shaped 6 nanosecond heater beam was observed from rapid heating to temperatures of 2.2 eV, enabling tests of shock timing models. Here, the temperature evolution of the target at various times during shock progression was characterized from the intensity of the elastic scattering component. The observation of scattering from plasmons, electron plasma oscillations, at shock coalescence indicates a transition to a dense metallic plasma state in LiH. From the frequency shift of the measured plasmon feature the electron density was directly determined with high accuracy, providing a material compression of a factor of three times solid density. The quality of data achieved in these experiments demonstrates the capability for single-shot dynamic characterization of dense shock compressed matter. The conditions probed in this experiment are relevant for the study of the physics of planetary formation and to characterize inertial confinement fusion targets for experiments such as on the National Ignition Facility (NIF), LLNL.

Basic X-ray Scattering for Soft Matter

Basic X-ray Scattering for Soft Matter PDF Author: Wilhelmus Hendrikus Jeu
Publisher: Oxford University Press
ISBN: 0198728662
Category : Science
Languages : en
Pages : 149

Get Book Here

Book Description
X-ray scattering is a well-established technique in materials science. The aim of this text is to explain basic principles and applications of x-ray scattering in a simple way using many practical examples followed by more elaborate case studies. It contains a separate chapter on the different types of order/disorder in soft matter that play such an important role in modern self-assembling systems. Finally the last chapter treats soft matter surfaces and thin film that are increasingly used in coatings and in many technological applications, such as liquid crystal displays and nanostructured block copolymer films

X-Ray Scattering of Soft Matter

X-Ray Scattering of Soft Matter PDF Author: Norbert Stribeck
Publisher: Springer Science & Business Media
ISBN: 3540698566
Category : Technology & Engineering
Languages : en
Pages : 251

Get Book Here

Book Description
This manual is a useful ready-reference guide to the analytical power of modern X-ray scattering in the field of soft matter. The author describes simple tools that can elucidate the mechanisms of structure evolution in the studied materials, and follows this up with a step-by-step guide to more advanced methods. Data analysis based on clear, unequivocal results is rendered simple and straightforward – with a stress on careful planning of experiments and adequate recording of all required data.

X-ray Scattering from Warm Dense Matter

X-ray Scattering from Warm Dense Matter PDF Author: María Elena García Saiz
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description


Simulations of X-ray Thomson Scattering from Warm Dense Matter

Simulations of X-ray Thomson Scattering from Warm Dense Matter PDF Author: Ghulam Shabbir Naz
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description


High Energy Density Laboratory Astrophysics

High Energy Density Laboratory Astrophysics PDF Author: Sergey V. Lebedev
Publisher: Springer Science & Business Media
ISBN: 1402060556
Category : Science
Languages : en
Pages : 321

Get Book Here

Book Description
This work will be of interest to a wide range of academics. It provides a comprehensive round-up of the proceedings and papers delivered at the 2006 Conference on High Energy Density Laboratory Astrophysics, held at Rice University in Houston, Texas, USA. The contributions come from scientists interested in this emerging field. They discuss the progress in topics covering everything from stellar evolution and envelopes, to opacities, radiation transport and x-ray photoionized plasmas.