Author: René Guinebretière
Publisher: John Wiley & Sons
ISBN: 1118613953
Category : Technology & Engineering
Languages : en
Pages : 290
Book Description
This book presents a physical approach to the diffraction phenomenon and its applications in materials science. An historical background to the discovery of X-ray diffraction is first outlined. Next, Part 1 gives a description of the physical phenomenon of X-ray diffraction on perfect and imperfect crystals. Part 2 then provides a detailed analysis of the instruments used for the characterization of powdered materials or thin films. The description of the processing of measured signals and their results is also covered, as are recent developments relating to quantitative microstructural analysis of powders or epitaxial thin films on the basis of X-ray diffraction. Given the comprehensive coverage offered by this title, anyone involved in the field of X-ray diffraction and its applications will find this of great use.
X-Ray Diffraction by Polycrystalline Materials
Author: René Guinebretière
Publisher: John Wiley & Sons
ISBN: 1118613953
Category : Technology & Engineering
Languages : en
Pages : 290
Book Description
This book presents a physical approach to the diffraction phenomenon and its applications in materials science. An historical background to the discovery of X-ray diffraction is first outlined. Next, Part 1 gives a description of the physical phenomenon of X-ray diffraction on perfect and imperfect crystals. Part 2 then provides a detailed analysis of the instruments used for the characterization of powdered materials or thin films. The description of the processing of measured signals and their results is also covered, as are recent developments relating to quantitative microstructural analysis of powders or epitaxial thin films on the basis of X-ray diffraction. Given the comprehensive coverage offered by this title, anyone involved in the field of X-ray diffraction and its applications will find this of great use.
Publisher: John Wiley & Sons
ISBN: 1118613953
Category : Technology & Engineering
Languages : en
Pages : 290
Book Description
This book presents a physical approach to the diffraction phenomenon and its applications in materials science. An historical background to the discovery of X-ray diffraction is first outlined. Next, Part 1 gives a description of the physical phenomenon of X-ray diffraction on perfect and imperfect crystals. Part 2 then provides a detailed analysis of the instruments used for the characterization of powdered materials or thin films. The description of the processing of measured signals and their results is also covered, as are recent developments relating to quantitative microstructural analysis of powders or epitaxial thin films on the basis of X-ray diffraction. Given the comprehensive coverage offered by this title, anyone involved in the field of X-ray diffraction and its applications will find this of great use.
X-ray Diffraction Procedures
Author: Harold P. Klug
Publisher:
ISBN:
Category :
Languages : en
Pages : 716
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 716
Book Description
X-Ray Diffraction Crystallography
Author: Yoshio Waseda
Publisher: Springer Science & Business Media
ISBN: 3642166350
Category : Technology & Engineering
Languages : en
Pages : 320
Book Description
X-ray diffraction crystallography for powder samples is a well-established and widely used method. It is applied to materials characterization to reveal the atomic scale structure of various substances in a variety of states. The book deals with fundamental properties of X-rays, geometry analysis of crystals, X-ray scattering and diffraction in polycrystalline samples and its application to the determination of the crystal structure. The reciprocal lattice and integrated diffraction intensity from crystals and symmetry analysis of crystals are explained. To learn the method of X-ray diffraction crystallography well and to be able to cope with the given subject, a certain number of exercises is presented in the book to calculate specific values for typical examples. This is particularly important for beginners in X-ray diffraction crystallography. One aim of this book is to offer guidance to solving the problems of 90 typical substances. For further convenience, 100 supplementary exercises are also provided with solutions. Some essential points with basic equations are summarized in each chapter, together with some relevant physical constants and the atomic scattering factors of the elements.
Publisher: Springer Science & Business Media
ISBN: 3642166350
Category : Technology & Engineering
Languages : en
Pages : 320
Book Description
X-ray diffraction crystallography for powder samples is a well-established and widely used method. It is applied to materials characterization to reveal the atomic scale structure of various substances in a variety of states. The book deals with fundamental properties of X-rays, geometry analysis of crystals, X-ray scattering and diffraction in polycrystalline samples and its application to the determination of the crystal structure. The reciprocal lattice and integrated diffraction intensity from crystals and symmetry analysis of crystals are explained. To learn the method of X-ray diffraction crystallography well and to be able to cope with the given subject, a certain number of exercises is presented in the book to calculate specific values for typical examples. This is particularly important for beginners in X-ray diffraction crystallography. One aim of this book is to offer guidance to solving the problems of 90 typical substances. For further convenience, 100 supplementary exercises are also provided with solutions. Some essential points with basic equations are summarized in each chapter, together with some relevant physical constants and the atomic scattering factors of the elements.
Thin Film Analysis by X-Ray Scattering
Author: Mario Birkholz
Publisher: John Wiley & Sons
ISBN: 3527607048
Category : Technology & Engineering
Languages : en
Pages : 378
Book Description
With contributions by Paul F. Fewster and Christoph Genzel While X-ray diffraction investigation of powders and polycrystalline matter was at the forefront of materials science in the 1960s and 70s, high-tech applications at the beginning of the 21st century are driven by the materials science of thin films. Very much an interdisciplinary field, chemists, biochemists, materials scientists, physicists and engineers all have a common interest in thin films and their manifold uses and applications. Grain size, porosity, density, preferred orientation and other properties are important to know: whether thin films fulfill their intended function depends crucially on their structure and morphology once a chemical composition has been chosen. Although their backgrounds differ greatly, all the involved specialists a profound understanding of how structural properties may be determined in order to perform their respective tasks in search of new and modern materials, coatings and functions. The author undertakes this in-depth introduction to the field of thin film X-ray characterization in a clear and precise manner.
Publisher: John Wiley & Sons
ISBN: 3527607048
Category : Technology & Engineering
Languages : en
Pages : 378
Book Description
With contributions by Paul F. Fewster and Christoph Genzel While X-ray diffraction investigation of powders and polycrystalline matter was at the forefront of materials science in the 1960s and 70s, high-tech applications at the beginning of the 21st century are driven by the materials science of thin films. Very much an interdisciplinary field, chemists, biochemists, materials scientists, physicists and engineers all have a common interest in thin films and their manifold uses and applications. Grain size, porosity, density, preferred orientation and other properties are important to know: whether thin films fulfill their intended function depends crucially on their structure and morphology once a chemical composition has been chosen. Although their backgrounds differ greatly, all the involved specialists a profound understanding of how structural properties may be determined in order to perform their respective tasks in search of new and modern materials, coatings and functions. The author undertakes this in-depth introduction to the field of thin film X-ray characterization in a clear and precise manner.
X-Ray Scattering from Semiconductors and Other Materials
Author: Paul F. Fewster
Publisher: World Scientific
ISBN: 9814436933
Category : Science
Languages : en
Pages : 510
Book Description
This third edition has been extended considerably to incorporate more information on instrument influences on the interpretation of X-ray scattering profiles and reciprocal space maps. Another significant inclusion is on the scattering from powder samples, covering a new theoretical approach that explains features that conventional theory cannot. The new edition includes some of the latest methodologies and theoretical treatments, including the latest thinking on dynamical theory and diffuse scattering. Recent advances in detectors also present new opportunities for rapid data collection and some very different approaches in data collection techniques; the possibilities associated with these advances will be included. This edition should be of interest to those who use X-ray scattering to understand more about their samples, so that they can make a better judgment of the parameter and confidence levels in their analyses, and how the combination of instrument, sample and detection should be considered as a whole to ensure this.
Publisher: World Scientific
ISBN: 9814436933
Category : Science
Languages : en
Pages : 510
Book Description
This third edition has been extended considerably to incorporate more information on instrument influences on the interpretation of X-ray scattering profiles and reciprocal space maps. Another significant inclusion is on the scattering from powder samples, covering a new theoretical approach that explains features that conventional theory cannot. The new edition includes some of the latest methodologies and theoretical treatments, including the latest thinking on dynamical theory and diffuse scattering. Recent advances in detectors also present new opportunities for rapid data collection and some very different approaches in data collection techniques; the possibilities associated with these advances will be included. This edition should be of interest to those who use X-ray scattering to understand more about their samples, so that they can make a better judgment of the parameter and confidence levels in their analyses, and how the combination of instrument, sample and detection should be considered as a whole to ensure this.
X-Ray Line Profile Analysis in Materials Science
Author: Gubicza, Jen?
Publisher: IGI Global
ISBN: 1466658533
Category : Technology & Engineering
Languages : en
Pages : 359
Book Description
X-ray line profile analysis is an effective and non-destructive method for the characterization of the microstructure in crystalline materials. Supporting research in the area of x-ray line profile analysis is necessary in promoting further developments in this field. X-Ray Line Profile Analysis in Materials Science aims to synthesize the existing knowledge of the theory, methodology, and applications of x-ray line profile analysis in real-world settings. This publication presents both the theoretical background and practical implementation of x-ray line profile analysis and serves as a reference source for engineers in various disciplines as well as scholars and upper-level students.
Publisher: IGI Global
ISBN: 1466658533
Category : Technology & Engineering
Languages : en
Pages : 359
Book Description
X-ray line profile analysis is an effective and non-destructive method for the characterization of the microstructure in crystalline materials. Supporting research in the area of x-ray line profile analysis is necessary in promoting further developments in this field. X-Ray Line Profile Analysis in Materials Science aims to synthesize the existing knowledge of the theory, methodology, and applications of x-ray line profile analysis in real-world settings. This publication presents both the theoretical background and practical implementation of x-ray line profile analysis and serves as a reference source for engineers in various disciplines as well as scholars and upper-level students.
Diffraction Analysis of the Microstructure of Materials
Author: Eric J. Mittemeijer
Publisher: Springer Science & Business Media
ISBN: 3662067234
Category : Science
Languages : en
Pages : 557
Book Description
Overview of diffraction methods applied to the analysis of the microstructure of materials. Since crystallite size and the presence of lattice defects have a decisive influence on the properties of many engineering materials, information about this microstructure is of vital importance in developing and assessing materials for practical applications. The most powerful and usually non-destructive evaluation techniques available are X-ray and neutron diffraction. The book details, among other things, diffraction-line broadening methods for determining crystallite size and atomic-scale strain due, e.g. to dislocations, and methods for the analysis of residual (macroscale) stress. The book assumes only a basic knowledge of solid-state physics and supplies readers sufficient information to apply the methods themselves.
Publisher: Springer Science & Business Media
ISBN: 3662067234
Category : Science
Languages : en
Pages : 557
Book Description
Overview of diffraction methods applied to the analysis of the microstructure of materials. Since crystallite size and the presence of lattice defects have a decisive influence on the properties of many engineering materials, information about this microstructure is of vital importance in developing and assessing materials for practical applications. The most powerful and usually non-destructive evaluation techniques available are X-ray and neutron diffraction. The book details, among other things, diffraction-line broadening methods for determining crystallite size and atomic-scale strain due, e.g. to dislocations, and methods for the analysis of residual (macroscale) stress. The book assumes only a basic knowledge of solid-state physics and supplies readers sufficient information to apply the methods themselves.
X-Ray Diffraction for Materials Research
Author: Myeongkyu Lee
Publisher: CRC Press
ISBN: 1315361973
Category : Science
Languages : en
Pages : 302
Book Description
X-ray diffraction is a useful and powerful analysis technique for characterizing crystalline materials commonly employed in MSE, physics, and chemistry. This informative new book describes the principles of X-ray diffraction and its applications to materials characterization. It consists of three parts. The first deals with elementary crystallography and optics, which is essential for understanding the theory of X-ray diffraction discussed in the second section of the book. Part 2 describes how the X-ray diffraction can be applied for characterizing such various forms of materials as thin films, single crystals, and powders. The third section of the book covers applications of X-ray diffraction. The book presents a number of examples to help readers better comprehend the subject. X-Ray Diffraction for Materials Research: From Fundamentals to Applications also • provides background knowledge of diffraction to enable nonspecialists to become familiar with the topics • covers the practical applications as well as the underlying principle of X-ray diffraction • presents appropriate examples with answers to help readers understand the contents more easily • includes thin film characterization by X-ray diffraction with relevant experimental techniques • presents a huge number of elaborately drawn graphics to help illustrate the content The book will help readers (students and researchers in materials science, physics, and chemistry) understand crystallography and crystal structures, interference and diffraction, structural analysis of bulk materials, characterization of thin films, and nondestructive measurement of internal stress and phase transition. Diffraction is an optical phenomenon and thus can be better understood when it is explained with an optical approach, which has been neglected in other books. This book helps to fill that gap, providing information to convey the concept of X-ray diffraction and how it can be applied to the materials analysis. This book will be a valuable reference book for researchers in the field and will work well as a good introductory book of X-ray diffraction for students in materials science, physics, and chemistry.
Publisher: CRC Press
ISBN: 1315361973
Category : Science
Languages : en
Pages : 302
Book Description
X-ray diffraction is a useful and powerful analysis technique for characterizing crystalline materials commonly employed in MSE, physics, and chemistry. This informative new book describes the principles of X-ray diffraction and its applications to materials characterization. It consists of three parts. The first deals with elementary crystallography and optics, which is essential for understanding the theory of X-ray diffraction discussed in the second section of the book. Part 2 describes how the X-ray diffraction can be applied for characterizing such various forms of materials as thin films, single crystals, and powders. The third section of the book covers applications of X-ray diffraction. The book presents a number of examples to help readers better comprehend the subject. X-Ray Diffraction for Materials Research: From Fundamentals to Applications also • provides background knowledge of diffraction to enable nonspecialists to become familiar with the topics • covers the practical applications as well as the underlying principle of X-ray diffraction • presents appropriate examples with answers to help readers understand the contents more easily • includes thin film characterization by X-ray diffraction with relevant experimental techniques • presents a huge number of elaborately drawn graphics to help illustrate the content The book will help readers (students and researchers in materials science, physics, and chemistry) understand crystallography and crystal structures, interference and diffraction, structural analysis of bulk materials, characterization of thin films, and nondestructive measurement of internal stress and phase transition. Diffraction is an optical phenomenon and thus can be better understood when it is explained with an optical approach, which has been neglected in other books. This book helps to fill that gap, providing information to convey the concept of X-ray diffraction and how it can be applied to the materials analysis. This book will be a valuable reference book for researchers in the field and will work well as a good introductory book of X-ray diffraction for students in materials science, physics, and chemistry.
Theoretical Concepts of X-Ray Nanoscale Analysis
Author: Andrei Benediktovich
Publisher: Springer Science & Business Media
ISBN: 3642381774
Category : Technology & Engineering
Languages : en
Pages : 325
Book Description
This book provides a concise survey of modern theoretical concepts of X-ray materials analysis. The principle features of the book are: basics of X-ray scattering, interaction between X-rays and matter and new theoretical concepts of X-ray scattering. The various X-ray techniques are considered in detail: high-resolution X-ray diffraction, X-ray reflectivity, grazing-incidence small-angle X-ray scattering and X-ray residual stress analysis. All the theoretical methods presented use the unified physical approach. This makes the book especially useful for readers learning and performing data analysis with different techniques. The theory is applicable to studies of bulk materials of all kinds, including single crystals and polycrystals as well as to surface studies under grazing incidence. The book appeals to researchers and graduate students alike.
Publisher: Springer Science & Business Media
ISBN: 3642381774
Category : Technology & Engineering
Languages : en
Pages : 325
Book Description
This book provides a concise survey of modern theoretical concepts of X-ray materials analysis. The principle features of the book are: basics of X-ray scattering, interaction between X-rays and matter and new theoretical concepts of X-ray scattering. The various X-ray techniques are considered in detail: high-resolution X-ray diffraction, X-ray reflectivity, grazing-incidence small-angle X-ray scattering and X-ray residual stress analysis. All the theoretical methods presented use the unified physical approach. This makes the book especially useful for readers learning and performing data analysis with different techniques. The theory is applicable to studies of bulk materials of all kinds, including single crystals and polycrystals as well as to surface studies under grazing incidence. The book appeals to researchers and graduate students alike.
X-ray Scattering from Semiconductors
Author: Paul F. Fewster
Publisher: World Scientific
ISBN: 1860941591
Category : Science
Languages : en
Pages : 303
Book Description
X-ray scattering is used extensively to provide detailed structural information about materials. Semiconductors have benefited from X-ray scattering techniques as an essential feedback method for crystal growth, including compositional and thickness determination of thin layers. The methods have been developed to reveal very detailed structural information concerning material quality, interface structure, relaxation, defects, surface damage, and more.
Publisher: World Scientific
ISBN: 1860941591
Category : Science
Languages : en
Pages : 303
Book Description
X-ray scattering is used extensively to provide detailed structural information about materials. Semiconductors have benefited from X-ray scattering techniques as an essential feedback method for crystal growth, including compositional and thickness determination of thin layers. The methods have been developed to reveal very detailed structural information concerning material quality, interface structure, relaxation, defects, surface damage, and more.