Author: N.E. Hurt
Publisher: Springer Science & Business Media
ISBN: 9401596263
Category : Science
Languages : en
Pages : 318
Book Description
This monograph on quantum wires and quantum devices is a companion vol ume to the author's Quantum Chaos and Mesoscopic Systems (Kluwer, Dordrecht, 1997). The goal of this work is to present to the reader the mathematical physics which has arisen in the study of these systems. The course which I have taken in this volume is to juxtapose the current work on the mathematical physics of quantum devices and the details behind the work so that the reader can gain an understanding of the physics, and where possible the open problems which re main in the development of a complete mathematical description of the devices. I have attempted to include sufficient background and references so that the reader can understand the limitations of the current methods and have direction to the original material for the research on the physics of these devices. As in the earlier volume, the monograph is a panoramic survey of the mathe matical physics of quantum wires and devices. Detailed proofs are kept to a min imum, with outlines of the principal steps and references to the primary sources as required. The survey is very broad to give a general development to a variety of problems in quantum devices, not a specialty volume.
Mathematical Physics of Quantum Wires and Devices
Author: N.E. Hurt
Publisher: Springer Science & Business Media
ISBN: 9401596263
Category : Science
Languages : en
Pages : 318
Book Description
This monograph on quantum wires and quantum devices is a companion vol ume to the author's Quantum Chaos and Mesoscopic Systems (Kluwer, Dordrecht, 1997). The goal of this work is to present to the reader the mathematical physics which has arisen in the study of these systems. The course which I have taken in this volume is to juxtapose the current work on the mathematical physics of quantum devices and the details behind the work so that the reader can gain an understanding of the physics, and where possible the open problems which re main in the development of a complete mathematical description of the devices. I have attempted to include sufficient background and references so that the reader can understand the limitations of the current methods and have direction to the original material for the research on the physics of these devices. As in the earlier volume, the monograph is a panoramic survey of the mathe matical physics of quantum wires and devices. Detailed proofs are kept to a min imum, with outlines of the principal steps and references to the primary sources as required. The survey is very broad to give a general development to a variety of problems in quantum devices, not a specialty volume.
Publisher: Springer Science & Business Media
ISBN: 9401596263
Category : Science
Languages : en
Pages : 318
Book Description
This monograph on quantum wires and quantum devices is a companion vol ume to the author's Quantum Chaos and Mesoscopic Systems (Kluwer, Dordrecht, 1997). The goal of this work is to present to the reader the mathematical physics which has arisen in the study of these systems. The course which I have taken in this volume is to juxtapose the current work on the mathematical physics of quantum devices and the details behind the work so that the reader can gain an understanding of the physics, and where possible the open problems which re main in the development of a complete mathematical description of the devices. I have attempted to include sufficient background and references so that the reader can understand the limitations of the current methods and have direction to the original material for the research on the physics of these devices. As in the earlier volume, the monograph is a panoramic survey of the mathe matical physics of quantum wires and devices. Detailed proofs are kept to a min imum, with outlines of the principal steps and references to the primary sources as required. The survey is very broad to give a general development to a variety of problems in quantum devices, not a specialty volume.
Handbook of Nanophysics
Author: Klaus D. Sattler
Publisher: CRC Press
ISBN: 1420075438
Category : Science
Languages : en
Pages : 770
Book Description
Intensive research on fullerenes, nanoparticles, and quantum dots in the 1990s led to interest in nanotubes and nanowires in subsequent years. Handbook of Nanophysics: Nanotubes and Nanowires focuses on the fundamental physics and latest applications of these important nanoscale materials and structures. Each peer-reviewed chapter contains a broad-
Publisher: CRC Press
ISBN: 1420075438
Category : Science
Languages : en
Pages : 770
Book Description
Intensive research on fullerenes, nanoparticles, and quantum dots in the 1990s led to interest in nanotubes and nanowires in subsequent years. Handbook of Nanophysics: Nanotubes and Nanowires focuses on the fundamental physics and latest applications of these important nanoscale materials and structures. Each peer-reviewed chapter contains a broad-
Binding and Scattering in Two-Dimensional Systems
Author: J. Timothy Londergan
Publisher: Springer Science & Business Media
ISBN: 3540479376
Category : Science
Languages : en
Pages : 224
Book Description
have advances in of The last few seen our understanding revolutionary years heterostructures. An amount the electronic of enormous properties quantum undertaken both the and the theoretical of research has been on experimental in nanostructures. The field vast of electronic now covers a aspects transport and extensive number of review of an books, articles, spectrum topics, papers and conference continue to be in this area. published Complete proceedings of this and field is the of this book. beyond exciting evolving scope coverage We refer the interested reader to of the excellent and some comprehensive books and conference on this proceedings subject. Much has been made in our of confined understanding quantum progress A's is well it is to construct heterostruc known, possible quantum systems. tures which well as one dimensional are approximated quasi two dimensional, zero dimensional Our interest here is in the of or properties particles systems. We brief andfields in two dimensional a intro quasi (2 D) systems. provide duction to the of 2 D in to motion in 2 D systems, particular systems physics the confined within finite For we will assume that a area. simplicity, generally Such confined is defined an infinite hard wall a by potential. system boundary We will 2 D will be referred to as a or as a wire.
Publisher: Springer Science & Business Media
ISBN: 3540479376
Category : Science
Languages : en
Pages : 224
Book Description
have advances in of The last few seen our understanding revolutionary years heterostructures. An amount the electronic of enormous properties quantum undertaken both the and the theoretical of research has been on experimental in nanostructures. The field vast of electronic now covers a aspects transport and extensive number of review of an books, articles, spectrum topics, papers and conference continue to be in this area. published Complete proceedings of this and field is the of this book. beyond exciting evolving scope coverage We refer the interested reader to of the excellent and some comprehensive books and conference on this proceedings subject. Much has been made in our of confined understanding quantum progress A's is well it is to construct heterostruc known, possible quantum systems. tures which well as one dimensional are approximated quasi two dimensional, zero dimensional Our interest here is in the of or properties particles systems. We brief andfields in two dimensional a intro quasi (2 D) systems. provide duction to the of 2 D in to motion in 2 D systems, particular systems physics the confined within finite For we will assume that a area. simplicity, generally Such confined is defined an infinite hard wall a by potential. system boundary We will 2 D will be referred to as a or as a wire.
Official Gazette of the United States Patent Office
Author: United States. Patent Office
Publisher:
ISBN:
Category : Patents
Languages : en
Pages : 1280
Book Description
Publisher:
ISBN:
Category : Patents
Languages : en
Pages : 1280
Book Description
Comprehensive Semiconductor Science and Technology
Author:
Publisher: Newnes
ISBN: 0080932282
Category : Science
Languages : en
Pages : 3572
Book Description
Semiconductors are at the heart of modern living. Almost everything we do, be it work, travel, communication, or entertainment, all depend on some feature of semiconductor technology. Comprehensive Semiconductor Science and Technology, Six Volume Set captures the breadth of this important field, and presents it in a single source to the large audience who study, make, and exploit semiconductors. Previous attempts at this achievement have been abbreviated, and have omitted important topics. Written and Edited by a truly international team of experts, this work delivers an objective yet cohesive global review of the semiconductor world. The work is divided into three sections. The first section is concerned with the fundamental physics of semiconductors, showing how the electronic features and the lattice dynamics change drastically when systems vary from bulk to a low-dimensional structure and further to a nanometer size. Throughout this section there is an emphasis on the full understanding of the underlying physics. The second section deals largely with the transformation of the conceptual framework of solid state physics into devices and systems which require the growth of extremely high purity, nearly defect-free bulk and epitaxial materials. The last section is devoted to exploitation of the knowledge described in the previous sections to highlight the spectrum of devices we see all around us. Provides a comprehensive global picture of the semiconductor world Each of the work's three sections presents a complete description of one aspect of the whole Written and Edited by a truly international team of experts
Publisher: Newnes
ISBN: 0080932282
Category : Science
Languages : en
Pages : 3572
Book Description
Semiconductors are at the heart of modern living. Almost everything we do, be it work, travel, communication, or entertainment, all depend on some feature of semiconductor technology. Comprehensive Semiconductor Science and Technology, Six Volume Set captures the breadth of this important field, and presents it in a single source to the large audience who study, make, and exploit semiconductors. Previous attempts at this achievement have been abbreviated, and have omitted important topics. Written and Edited by a truly international team of experts, this work delivers an objective yet cohesive global review of the semiconductor world. The work is divided into three sections. The first section is concerned with the fundamental physics of semiconductors, showing how the electronic features and the lattice dynamics change drastically when systems vary from bulk to a low-dimensional structure and further to a nanometer size. Throughout this section there is an emphasis on the full understanding of the underlying physics. The second section deals largely with the transformation of the conceptual framework of solid state physics into devices and systems which require the growth of extremely high purity, nearly defect-free bulk and epitaxial materials. The last section is devoted to exploitation of the knowledge described in the previous sections to highlight the spectrum of devices we see all around us. Provides a comprehensive global picture of the semiconductor world Each of the work's three sections presents a complete description of one aspect of the whole Written and Edited by a truly international team of experts
Advances in Research and Applications: Semiconductor Heterostructures and Nanostructures
Author:
Publisher: Academic Press
ISBN: 0080865089
Category : Technology & Engineering
Languages : en
Pages : 465
Book Description
The explosion of the science of mesoscopic structures is having a great impact on physics and electrical engineering because of the possible applications of these structures in microelectronic and optoelectronic devices of the future. This volume of Solid State Physics consists of two comprehensive and authoritative articles that discuss most of the physical problems that have so far been identified as being of importance in semiconductor nanostructures. Much of the volume is tutorial in characture--while at the same time time presenting current and vital theoretical and experimental results and a copious reference list--so it will be essential reading to all those taking a part in the research and development of this emerging technology.
Publisher: Academic Press
ISBN: 0080865089
Category : Technology & Engineering
Languages : en
Pages : 465
Book Description
The explosion of the science of mesoscopic structures is having a great impact on physics and electrical engineering because of the possible applications of these structures in microelectronic and optoelectronic devices of the future. This volume of Solid State Physics consists of two comprehensive and authoritative articles that discuss most of the physical problems that have so far been identified as being of importance in semiconductor nanostructures. Much of the volume is tutorial in characture--while at the same time time presenting current and vital theoretical and experimental results and a copious reference list--so it will be essential reading to all those taking a part in the research and development of this emerging technology.
Introduction to Topological Quantum Matter & Quantum Computation
Author: Tudor D. Stanescu
Publisher: CRC Press
ISBN: 1040041914
Category : Science
Languages : en
Pages : 449
Book Description
What is "topological" about topological quantum states? How many types of topological quantum phases are there? What is a zero-energy Majorana mode, how can it be realized in a solid-state system, and how can it be used as a platform for topological quantum computation? What is quantum computation and what makes it different from classical computation? Addressing these and other related questions, Introduction to Topological Quantum Matter & Quantum Computation provides an introduction to and a synthesis of a fascinating and rapidly expanding research field emerging at the crossroads of condensed matter physics, mathematics, and computer science. Providing the big picture and emphasizing two major new paradigms in condensed matter physics – quantum topology and quantum information – this book is ideal for graduate students and researchers entering this field, as it allows for the fruitful transfer of ideas amongst different areas, and includes many specific examples to help the reader understand abstract and sometimes challenging concepts. It explores the topological quantum world beyond the well-known topological insulators and superconductors and unveils the deep connections with quantum computation. It addresses key principles behind the classification of topological quantum phases and relevant mathematical concepts and discusses models of interacting and noninteracting topological systems, such as the toric code and the p-wave superconductor. The book also covers the basic properties of anyons, and aspects concerning the realization of topological states in solid state structures and cold atom systems. Topological quantum computation is also presented using a broad perspective, which includes elements of classical and quantum information theory, basic concepts in the theory of computation, such as computational models and computational complexity, examples of quantum algorithms, and key ideas underlying quantum computation with anyons. This new edition has been updated throughout, with exciting new discussions on crystalline topological phases, including higher-order topological insulators; gapless topological phases, including Weyl semimetals; periodically-driven topological insulators; and a discussion of axion electrodynamics in topological materials. Key Features: · Provides an accessible introduction to this exciting, cross-disciplinary area of research. · Fully updated throughout with new content on the latest result from the field. · Authored by an authority on the subject. Tudor Stanescu is a professor of Condensed Matter Theory at West Virginia University, USA. He received a B.S. in Physics from the University of Bucharest, Romania, in 1994 and a Ph.D. in Theoretical Physics from the University of Illinois at Urbana Champaign in 2002. He was a Postdoctoral Fellow at Rutgers University and at the University of Maryland from 2003 to 2009. He joined the Department of Physics and Astronomy at West Virginia University in Fall 2009. Prof. Stanescu’s research interests encompass a variety of topics in theoretical condensed matter physics including topological insulators and superconductors, topological quantum computation, ultra-cold atom systems in optical lattices, and strongly correlated materials, such as, for example, cuprate high-temperature superconductors. His research uses a combination of analytical and numerical tools and focuses on understanding the emergence of exotic states of matter in solid state and cold atom structures, for example, topological superconducting phases that host Majorana zero modes, and on investigating the possibilities of exploiting these states as physical platforms for quantum computation.
Publisher: CRC Press
ISBN: 1040041914
Category : Science
Languages : en
Pages : 449
Book Description
What is "topological" about topological quantum states? How many types of topological quantum phases are there? What is a zero-energy Majorana mode, how can it be realized in a solid-state system, and how can it be used as a platform for topological quantum computation? What is quantum computation and what makes it different from classical computation? Addressing these and other related questions, Introduction to Topological Quantum Matter & Quantum Computation provides an introduction to and a synthesis of a fascinating and rapidly expanding research field emerging at the crossroads of condensed matter physics, mathematics, and computer science. Providing the big picture and emphasizing two major new paradigms in condensed matter physics – quantum topology and quantum information – this book is ideal for graduate students and researchers entering this field, as it allows for the fruitful transfer of ideas amongst different areas, and includes many specific examples to help the reader understand abstract and sometimes challenging concepts. It explores the topological quantum world beyond the well-known topological insulators and superconductors and unveils the deep connections with quantum computation. It addresses key principles behind the classification of topological quantum phases and relevant mathematical concepts and discusses models of interacting and noninteracting topological systems, such as the toric code and the p-wave superconductor. The book also covers the basic properties of anyons, and aspects concerning the realization of topological states in solid state structures and cold atom systems. Topological quantum computation is also presented using a broad perspective, which includes elements of classical and quantum information theory, basic concepts in the theory of computation, such as computational models and computational complexity, examples of quantum algorithms, and key ideas underlying quantum computation with anyons. This new edition has been updated throughout, with exciting new discussions on crystalline topological phases, including higher-order topological insulators; gapless topological phases, including Weyl semimetals; periodically-driven topological insulators; and a discussion of axion electrodynamics in topological materials. Key Features: · Provides an accessible introduction to this exciting, cross-disciplinary area of research. · Fully updated throughout with new content on the latest result from the field. · Authored by an authority on the subject. Tudor Stanescu is a professor of Condensed Matter Theory at West Virginia University, USA. He received a B.S. in Physics from the University of Bucharest, Romania, in 1994 and a Ph.D. in Theoretical Physics from the University of Illinois at Urbana Champaign in 2002. He was a Postdoctoral Fellow at Rutgers University and at the University of Maryland from 2003 to 2009. He joined the Department of Physics and Astronomy at West Virginia University in Fall 2009. Prof. Stanescu’s research interests encompass a variety of topics in theoretical condensed matter physics including topological insulators and superconductors, topological quantum computation, ultra-cold atom systems in optical lattices, and strongly correlated materials, such as, for example, cuprate high-temperature superconductors. His research uses a combination of analytical and numerical tools and focuses on understanding the emergence of exotic states of matter in solid state and cold atom structures, for example, topological superconducting phases that host Majorana zero modes, and on investigating the possibilities of exploiting these states as physical platforms for quantum computation.
Technical Publication ... of the New York State College of Forestry at Syracuse University
Author:
Publisher:
ISBN:
Category : Forestry schools and education
Languages : en
Pages : 904
Book Description
Publisher:
ISBN:
Category : Forestry schools and education
Languages : en
Pages : 904
Book Description
The Forests of the United States
Author: Overton Westfeldt Price
Publisher:
ISBN:
Category : Forest management
Languages : en
Pages : 810
Book Description
Publisher:
ISBN:
Category : Forest management
Languages : en
Pages : 810
Book Description
The Packages
Author:
Publisher:
ISBN:
Category : Boxes
Languages : en
Pages : 1046
Book Description
Publisher:
ISBN:
Category : Boxes
Languages : en
Pages : 1046
Book Description