Author: Paul Veers
Publisher: Institution of Engineering and Technology
ISBN: 1785615238
Category : Technology & Engineering
Languages : en
Pages : 417
Book Description
In order to optimise the yield of wind power from existing and future wind plants, the entire breadth of the system of a plant, from the wind field to the turbine components, needs to be modelled in the design process. The modelling and simulation approaches used in each subsystem as well as the system-wide solution methods to optimize across subsystem boundaries are described in this reference. Chapters are written by technical experts in each field, describing the current state of the art in modelling and simulation for wind plant design. This comprehensive, two-volume research reference will provide long-lasting insight into the methods that will need to be developed for the technology to advance into its next generation.
Wind Energy Modeling and Simulation
Author: Paul Veers
Publisher: Institution of Engineering and Technology
ISBN: 1785615238
Category : Technology & Engineering
Languages : en
Pages : 417
Book Description
In order to optimise the yield of wind power from existing and future wind plants, the entire breadth of the system of a plant, from the wind field to the turbine components, needs to be modelled in the design process. The modelling and simulation approaches used in each subsystem as well as the system-wide solution methods to optimize across subsystem boundaries are described in this reference. Chapters are written by technical experts in each field, describing the current state of the art in modelling and simulation for wind plant design. This comprehensive, two-volume research reference will provide long-lasting insight into the methods that will need to be developed for the technology to advance into its next generation.
Publisher: Institution of Engineering and Technology
ISBN: 1785615238
Category : Technology & Engineering
Languages : en
Pages : 417
Book Description
In order to optimise the yield of wind power from existing and future wind plants, the entire breadth of the system of a plant, from the wind field to the turbine components, needs to be modelled in the design process. The modelling and simulation approaches used in each subsystem as well as the system-wide solution methods to optimize across subsystem boundaries are described in this reference. Chapters are written by technical experts in each field, describing the current state of the art in modelling and simulation for wind plant design. This comprehensive, two-volume research reference will provide long-lasting insight into the methods that will need to be developed for the technology to advance into its next generation.
Wind Energy Modeling and Simulation
Author: Paul Veers
Publisher: Institution of Engineering and Technology
ISBN: 1785615211
Category : Technology & Engineering
Languages : en
Pages : 425
Book Description
In order to optimise the yield of wind power from existing and future wind plants, the entire breadth of the system of a plant, from the wind field to the turbine components, needs to be modelled in the design process. The modelling and simulation approaches used in each subsystem as well as the system-wide solution methods to optimize across subsystem boundaries are described in this reference. Chapters are written by technical experts in each field, describing the current state of the art in modelling and simulation for wind plant design. This comprehensive, two-volume research reference will provide long-lasting insight into the methods that will need to be developed for the technology to advance into its next generation.
Publisher: Institution of Engineering and Technology
ISBN: 1785615211
Category : Technology & Engineering
Languages : en
Pages : 425
Book Description
In order to optimise the yield of wind power from existing and future wind plants, the entire breadth of the system of a plant, from the wind field to the turbine components, needs to be modelled in the design process. The modelling and simulation approaches used in each subsystem as well as the system-wide solution methods to optimize across subsystem boundaries are described in this reference. Chapters are written by technical experts in each field, describing the current state of the art in modelling and simulation for wind plant design. This comprehensive, two-volume research reference will provide long-lasting insight into the methods that will need to be developed for the technology to advance into its next generation.
Modelling and Simulation of Complex Systems for Sustainable Energy Efficiency
Author: Ahmed Hammami
Publisher: Springer Nature
ISBN: 3030855848
Category : Technology & Engineering
Languages : en
Pages : 270
Book Description
This book provides readers with an overview of recent theories and methods for studying complex mechanical systems used in energy production, such as wind turbines, but not limited to them. The emphasis is put on strategies for increasing energy efficiency, and on recent industrial applications. Topics cover dynamics and vibration, vibroacoustics, engineering design, modelling and simulation, fault diagnostics, signal processing and prognostics. The book is based on peer-review contributions and invited talks presented at the first International Workshop on MOdelling and Simulation of COmplex Systems for Sustainable Energy Efficiency, MOSCOSSEE 2021, held online on February 25-26, 2021, and organized by the LAboratory of Mechanics, Modelling and Production (LA2MP) from University of Sfax, Tunisia and the Department of Mechanical and Aeronautical engineering, Centre of Asset Integrity Management (C-AIM) from University of Pretoria, South Africa. By offering authoritative information on innovative methods and tools for application in renewable energy production, it provides a valuable resource to both academics and professionals, and a bridge to facilitate communication between the two groups.
Publisher: Springer Nature
ISBN: 3030855848
Category : Technology & Engineering
Languages : en
Pages : 270
Book Description
This book provides readers with an overview of recent theories and methods for studying complex mechanical systems used in energy production, such as wind turbines, but not limited to them. The emphasis is put on strategies for increasing energy efficiency, and on recent industrial applications. Topics cover dynamics and vibration, vibroacoustics, engineering design, modelling and simulation, fault diagnostics, signal processing and prognostics. The book is based on peer-review contributions and invited talks presented at the first International Workshop on MOdelling and Simulation of COmplex Systems for Sustainable Energy Efficiency, MOSCOSSEE 2021, held online on February 25-26, 2021, and organized by the LAboratory of Mechanics, Modelling and Production (LA2MP) from University of Sfax, Tunisia and the Department of Mechanical and Aeronautical engineering, Centre of Asset Integrity Management (C-AIM) from University of Pretoria, South Africa. By offering authoritative information on innovative methods and tools for application in renewable energy production, it provides a valuable resource to both academics and professionals, and a bridge to facilitate communication between the two groups.
Modeling and Simulation of Smart Grid Integrated with Hybrid Renewable Energy Systems
Author: Mohamed Abdelaziz Mohamed
Publisher: Springer
ISBN: 3319647954
Category : Technology & Engineering
Languages : en
Pages : 91
Book Description
This book presents a comprehensive definition of smart grids and their benefits, and compares smart and traditional grids. It also introduces a design methodology for stand-alone hybrid renewable energy system with and without applying the smart grid concepts for comparison purposes. It discusses using renewable energy power plants to feed loads in remote areas as well as in central power plants connected to electric utilities. Smart grid concepts used in the design of the hybrid renewable power systems can reduce the size of components, which can be translated to a reduction in the cost of generated energy. The proposed hybrid renewable energy system includes wind, photovoltaic, battery, and diesel, and is used initially to feed certain loads, covering the load required completely. The book introduces a novel methodology taking the smart grid concept into account by dividing the loads into high and low priority parts. The high priority part should be supplied at any generated conditions. However, the low priority loads can be shifted to the time when the generated energy from renewable energy sources is greater than the high priority loads requirements. The results show that the use of this smart grid concept reduces the component size and the cost of generated energy compared to that without dividing the loads. The book also describes the use of smart optimization techniques like particle swarm optimization (PSO) and genetic algorithm (GA) to optimally design the hybrid renewable energy system. This book provides an excellent background to renewable energy sources, optimal sizing and locating of hybrid renewable energy sources, the best optimization methodologies for sizing and designing the components of hybrid renewable energy systems, and offers insights into using smart grid concepts in the system’s design and sizing. It also helps readers understand the dispatch methodology and how to connect the system’s different components, their modeling, and the cost analysis of the system.
Publisher: Springer
ISBN: 3319647954
Category : Technology & Engineering
Languages : en
Pages : 91
Book Description
This book presents a comprehensive definition of smart grids and their benefits, and compares smart and traditional grids. It also introduces a design methodology for stand-alone hybrid renewable energy system with and without applying the smart grid concepts for comparison purposes. It discusses using renewable energy power plants to feed loads in remote areas as well as in central power plants connected to electric utilities. Smart grid concepts used in the design of the hybrid renewable power systems can reduce the size of components, which can be translated to a reduction in the cost of generated energy. The proposed hybrid renewable energy system includes wind, photovoltaic, battery, and diesel, and is used initially to feed certain loads, covering the load required completely. The book introduces a novel methodology taking the smart grid concept into account by dividing the loads into high and low priority parts. The high priority part should be supplied at any generated conditions. However, the low priority loads can be shifted to the time when the generated energy from renewable energy sources is greater than the high priority loads requirements. The results show that the use of this smart grid concept reduces the component size and the cost of generated energy compared to that without dividing the loads. The book also describes the use of smart optimization techniques like particle swarm optimization (PSO) and genetic algorithm (GA) to optimally design the hybrid renewable energy system. This book provides an excellent background to renewable energy sources, optimal sizing and locating of hybrid renewable energy sources, the best optimization methodologies for sizing and designing the components of hybrid renewable energy systems, and offers insights into using smart grid concepts in the system’s design and sizing. It also helps readers understand the dispatch methodology and how to connect the system’s different components, their modeling, and the cost analysis of the system.
Modeling and Simulation of Energy Systems
Author: Thomas A. Adams II
Publisher: MDPI
ISBN: 3039215183
Category : Technology & Engineering
Languages : en
Pages : 496
Book Description
Energy Systems Engineering is one of the most exciting and fastest growing fields in engineering. Modeling and simulation plays a key role in Energy Systems Engineering because it is the primary basis on which energy system design, control, optimization, and analysis are based. This book contains a specially curated collection of recent research articles on the modeling and simulation of energy systems written by top experts around the world from universities and research labs, such as Massachusetts Institute of Technology, Yale University, Norwegian University of Science and Technology, National Energy Technology Laboratory of the US Department of Energy, University of Technology Sydney, McMaster University, Queens University, Purdue University, the University of Connecticut, Technical University of Denmark, the University of Toronto, Technische Universität Berlin, Texas A&M, the University of Pennsylvania, and many more. The key research themes covered include energy systems design, control systems, flexible operations, operational strategies, and systems analysis. The addressed areas of application include electric power generation, refrigeration cycles, natural gas liquefaction, shale gas treatment, concentrated solar power, waste-to-energy systems, micro-gas turbines, carbon dioxide capture systems, energy storage, petroleum refinery unit operations, Brayton cycles, to name but a few.
Publisher: MDPI
ISBN: 3039215183
Category : Technology & Engineering
Languages : en
Pages : 496
Book Description
Energy Systems Engineering is one of the most exciting and fastest growing fields in engineering. Modeling and simulation plays a key role in Energy Systems Engineering because it is the primary basis on which energy system design, control, optimization, and analysis are based. This book contains a specially curated collection of recent research articles on the modeling and simulation of energy systems written by top experts around the world from universities and research labs, such as Massachusetts Institute of Technology, Yale University, Norwegian University of Science and Technology, National Energy Technology Laboratory of the US Department of Energy, University of Technology Sydney, McMaster University, Queens University, Purdue University, the University of Connecticut, Technical University of Denmark, the University of Toronto, Technische Universität Berlin, Texas A&M, the University of Pennsylvania, and many more. The key research themes covered include energy systems design, control systems, flexible operations, operational strategies, and systems analysis. The addressed areas of application include electric power generation, refrigeration cycles, natural gas liquefaction, shale gas treatment, concentrated solar power, waste-to-energy systems, micro-gas turbines, carbon dioxide capture systems, energy storage, petroleum refinery unit operations, Brayton cycles, to name but a few.
Simulation of Power System with Renewables
Author: Linash Kunjumuhammed
Publisher: Academic Press
ISBN: 0128112549
Category : Technology & Engineering
Languages : en
Pages : 268
Book Description
Simulation of Power System with Renewables provides details on the modelling and efficient implementation of MATLAB, particularly with a renewable energy driven power system. The book presents a step-by-step approach to modelling implementation, including all major components used in current power systems operation, giving the reader the opportunity to learn how to gather models for conventional generators, wind farms, solar plants and FACTS control devices. Users will find this to be a central resource for modelling, building and simulating renewable power systems, including discussions on its limitations, assumptions on the model, and the implementation and analysis of the system. - Presents worked examples and equations in each chapter that address system limitations and flexibility - Provides step-by-step guidance for building and simulating models with required data - Contains case studies on a number of devices, including FACTS, and renewable generation
Publisher: Academic Press
ISBN: 0128112549
Category : Technology & Engineering
Languages : en
Pages : 268
Book Description
Simulation of Power System with Renewables provides details on the modelling and efficient implementation of MATLAB, particularly with a renewable energy driven power system. The book presents a step-by-step approach to modelling implementation, including all major components used in current power systems operation, giving the reader the opportunity to learn how to gather models for conventional generators, wind farms, solar plants and FACTS control devices. Users will find this to be a central resource for modelling, building and simulating renewable power systems, including discussions on its limitations, assumptions on the model, and the implementation and analysis of the system. - Presents worked examples and equations in each chapter that address system limitations and flexibility - Provides step-by-step guidance for building and simulating models with required data - Contains case studies on a number of devices, including FACTS, and renewable generation
Ocean Energy Modeling and Simulation with Big Data
Author: Vikas Khare
Publisher: Butterworth-Heinemann
ISBN: 0128189053
Category : Science
Languages : en
Pages : 371
Book Description
Ocean Energy Modeling and Simulation with Big Data: Computational Intelligence for System Optimization and Grid Integration offers the fundamental and practical aspects of big data solutions applied to ocean and offshore energy systems. The book explores techniques for assessment of tidal, wave and offshore wind energy systems. It presents the use of data mining software to simulate systems and Hadoop technology to evaluate control systems. The use of Map Reduce algorithms in systems optimization is examined, along with the application of NoSQL in systems management. Actual data collection through web-based applications and social networks is discussed, along with practical applications of recommendations. - Introduces computational methods for processing and analyzing data to predict ocean energy system production, assess their efficiency, and ensure their reliable connection to power grids - Covers data processing solutions like Hadoop, NoSQL, Map Reduce and Lambda, discussing their applications in ocean energy for system design and optimization - Provides practical exercises that demonstrate the concepts explored in each chapter
Publisher: Butterworth-Heinemann
ISBN: 0128189053
Category : Science
Languages : en
Pages : 371
Book Description
Ocean Energy Modeling and Simulation with Big Data: Computational Intelligence for System Optimization and Grid Integration offers the fundamental and practical aspects of big data solutions applied to ocean and offshore energy systems. The book explores techniques for assessment of tidal, wave and offshore wind energy systems. It presents the use of data mining software to simulate systems and Hadoop technology to evaluate control systems. The use of Map Reduce algorithms in systems optimization is examined, along with the application of NoSQL in systems management. Actual data collection through web-based applications and social networks is discussed, along with practical applications of recommendations. - Introduces computational methods for processing and analyzing data to predict ocean energy system production, assess their efficiency, and ensure their reliable connection to power grids - Covers data processing solutions like Hadoop, NoSQL, Map Reduce and Lambda, discussing their applications in ocean energy for system design and optimization - Provides practical exercises that demonstrate the concepts explored in each chapter
Modeling and Analysis of Doubly Fed Induction Generator Wind Energy Systems
Author: Lingling Fan
Publisher: Academic Press
ISBN: 0128029862
Category : Technology & Engineering
Languages : en
Pages : 154
Book Description
Wind Energy Systems: Modeling, Analysis and Control with DFIG provides key information on machine/converter modelling strategies based on space vectors, complex vector, and further frequency-domain variables. It includes applications that focus on wind energy grid integration, with analysis and control explanations with examples. For those working in the field of wind energy integration examining the potential risk of stability is key, this edition looks at how wind energy is modelled, what kind of control systems are adopted, how it interacts with the grid, as well as suitable study approaches. Not only giving principles behind the dynamics of wind energy grid integration system, but also examining different strategies for analysis, such as frequency-domain-based and state-space-based approaches. - Focuses on real and reactive power control - Supported by PSCAD and Matlab/Simulink examples - Considers the difference in control objectives between ac drive systems and grid integration systems
Publisher: Academic Press
ISBN: 0128029862
Category : Technology & Engineering
Languages : en
Pages : 154
Book Description
Wind Energy Systems: Modeling, Analysis and Control with DFIG provides key information on machine/converter modelling strategies based on space vectors, complex vector, and further frequency-domain variables. It includes applications that focus on wind energy grid integration, with analysis and control explanations with examples. For those working in the field of wind energy integration examining the potential risk of stability is key, this edition looks at how wind energy is modelled, what kind of control systems are adopted, how it interacts with the grid, as well as suitable study approaches. Not only giving principles behind the dynamics of wind energy grid integration system, but also examining different strategies for analysis, such as frequency-domain-based and state-space-based approaches. - Focuses on real and reactive power control - Supported by PSCAD and Matlab/Simulink examples - Considers the difference in control objectives between ac drive systems and grid integration systems
Modeling, Simulation and Optimization of Wind Farms and Hybrid Systems
Author: Karam Y. Maalawi
Publisher:
ISBN: 9781789856125
Category : Hybrid power systems
Languages : en
Pages :
Book Description
Publisher:
ISBN: 9781789856125
Category : Hybrid power systems
Languages : en
Pages :
Book Description
Modelling and Simulation of Power Electronic Converter Dominated Power Systems in PowerFactory
Author: Francisco M. Gonzalez-Longatt
Publisher: Springer Nature
ISBN: 303054124X
Category : Electric current converters
Languages : en
Pages : 381
Book Description
This book provides an overview of power electronic converters for numerical simulations based on DIgSILENT PowerFactory. It covers the working principles, key assumptions and implementation of models of different types of these power systems. The book is divided into three main parts: the first discusses high-voltage direct currents, while the second part examines distribution systems and micro-grids. Lastly, the third addresses the equipment and technologies used in modelling and simulation. Each chapter includes practical examples and exercises, and the accompanying software illustrates essential models, principles and performance using DIgSILENT PowerFactory. Exploring various current topics in the field of modelling power systems, this book will appeal to a variety of readers, ranging from students to practitioners.
Publisher: Springer Nature
ISBN: 303054124X
Category : Electric current converters
Languages : en
Pages : 381
Book Description
This book provides an overview of power electronic converters for numerical simulations based on DIgSILENT PowerFactory. It covers the working principles, key assumptions and implementation of models of different types of these power systems. The book is divided into three main parts: the first discusses high-voltage direct currents, while the second part examines distribution systems and micro-grids. Lastly, the third addresses the equipment and technologies used in modelling and simulation. Each chapter includes practical examples and exercises, and the accompanying software illustrates essential models, principles and performance using DIgSILENT PowerFactory. Exploring various current topics in the field of modelling power systems, this book will appeal to a variety of readers, ranging from students to practitioners.