Principles of Gravitational Lensing

Principles of Gravitational Lensing PDF Author: Arthur B. Congdon
Publisher: Springer
ISBN: 303002122X
Category : Science
Languages : en
Pages : 292

Get Book Here

Book Description
This textbook provides an introduction to gravitational lensing, which has become an invaluable tool in modern astrophysics, with applications that range from finding planets orbiting distant stars to understanding how dark matter and dark energy conspired to form the cosmic structures we see today. Principles of Gravitational Lensing begins with Einstein’s prediction that gravity bends light, and shows how that fundamental idea has spawned a rich field of study over the past century. The gravitational deflection of light was first detected by Eddington during a solar eclipse in May 1919, launching Einstein and his theory of relativity into public view. Yet the possibility of using the phenomenon to unlock mysteries of the Universe seemed remote, given the technology of the day. Theoretical work was carried out sporadically over the next six decades, but only with the discovery of the system Q0957+561 in 1979 was gravitational lensing transformed from a curiosity of general relativity into a practical observational tool. This book describes how the three subfields known as strong lensing, weak lensing, and microlensing have grown independently but become increasingly intertwined. Drawing on their research experience, Congdon and Keeton begin with the basic physics of light bending, then present the mathematical foundations of gravitational lensing, building up to current research topics in a clear and systematic way. Relevant background material from physics and mathematics is included, making the book self-contained. The derivations and explanations are supplemented by exercises designed to help students master the theoretical concepts as well as the methods that drive current research. An extensive bibliography guides those wishing to delve more deeply into particular areas of interest. Principles of Gravitational Lensing is ideal for advanced students and seasoned researchers looking to penetrate this thriving subject and even contribute research of their own.

Introduction to Gravitational Lensing

Introduction to Gravitational Lensing PDF Author: Massimo Meneghetti
Publisher: Springer Nature
ISBN: 3030735826
Category : Science
Languages : en
Pages : 412

Get Book Here

Book Description
This book introduces the phenomenology of gravitational lensing in an accessible manner and provides a thorough discussion of the related astrophysical applications. It is intended for advanced undergraduates and graduate students who want to start working in this rapidly evolving field. This includes also senior researchers who are interested in ongoing or future surveys and missions such as DES, Euclid, WFIRST, LSST. The reader is guided through many fascinating topics related to gravitational lensing like the structure of our galaxy, the searching for exoplanets, the investigation of dark matter in galaxies and galaxy clusters, and several aspects of cosmology, including dark energy and the cosmic microwave background. The author, who has gained valuable experience as academic teacher, guides the readers towards the comprehension of the theory of gravitational lensing and related observational techniques by using simple codes written in python. This approach, beyond facilitating the understanding of gravitational lensing, is preparatory for learning the python programming language which is gaining large popularity both in academia and in the private sector.

Singularity Theory and Gravitational Lensing

Singularity Theory and Gravitational Lensing PDF Author: Arlie O. Petters
Publisher: Springer Science & Business Media
ISBN: 1461201454
Category : Science
Languages : en
Pages : 616

Get Book Here

Book Description
This monograph is the first to develop a mathematical theory of gravitational lensing. The theory applies to any finite number of deflector planes and highlights the distinctions between single and multiple plane lensing. Introductory material in Parts I and II present historical highlights and the astrophysical aspects of the subject. Part III employs the ideas and results of singularity theory to put gravitational lensing on a rigorous mathematical foundation.

Gravitational Lensing: Strong, Weak and Micro

Gravitational Lensing: Strong, Weak and Micro PDF Author: Peter Schneider
Publisher: Springer Science & Business Media
ISBN: 3540303103
Category : Science
Languages : en
Pages : 565

Get Book Here

Book Description
The observation, in 1919 by A.S. Eddington and collaborators, of the gra- tational de?ection of light by the Sun proved one of the many predictions of Einstein’s Theory of General Relativity: The Sun was the ?rst example of a gravitational lens. In 1936, Albert Einstein published an article in which he suggested - ing stars as gravitational lenses. A year later, Fritz Zwicky pointed out that galaxies would act as lenses much more likely than stars, and also gave a list of possible applications, as a means to determine the dark matter content of galaxies and clusters of galaxies. It was only in 1979 that the ?rst example of an extragalactic gravitational lens was provided by the observation of the distant quasar QSO 0957+0561, by D. Walsh, R.F. Carswell, and R.J. Weymann. A few years later, the ?rst lens showing images in the form of arcs was detected. The theory, observations, and applications of gravitational lensing cons- tute one of the most rapidly growing branches of astrophysics. The gravi- tional de?ection of light generated by mass concentrations along a light path producesmagni?cation,multiplicity,anddistortionofimages,anddelaysp- ton propagation from one line of sight relative to another. The huge amount of scienti?c work produced over the last decade on gravitational lensing has clearly revealed its already substantial and wide impact, and its potential for future astrophysical applications.

The Extragalactic Distance Scale

The Extragalactic Distance Scale PDF Author: Space Telescope Science Institute (U.S.). Symposium
Publisher: Cambridge University Press
ISBN: 9780521591645
Category : Science
Languages : en
Pages : 354

Get Book Here

Book Description
One of the hottest debates in astronomy and cosmology today concerns the value of the Hubble constant. This constant is of paramount importance since it fixes the size and age of the Universe. At a symposium at the Space Telescope Science Institute, experts from around the world presented the latest results from a plethora of techniques for determining the Hubble constant. The value has always been controversial, but at this meeting experts' results agreed for the first time to within about 20%. Based on the meeting, this book presents twenty-three specially written review articles. They provide a comprehensive account of the Hubble-constant debate with the latest results from gravitational lensing, supernovae and novae, the Tully-Fisher relation, the Sunyaev-Zeldovich effect, globular clusters, planetary nebulae, light echoes, and the Hubble Space Telescope Key Project. This timely volume provides a standard reference for graduate students and researchers in astronomy and cosmology.

Impact of Gravitational Lensing on Cosmology (IAU S225)

Impact of Gravitational Lensing on Cosmology (IAU S225) PDF Author: International Astronomical Union. Symposium
Publisher: Cambridge University Press
ISBN: 9780521851961
Category : Science
Languages : en
Pages : 478

Get Book Here

Book Description
This book contains the proceedings of the International Astronomical Union Symposium no. 225, held in July 2004 at the Ecole Polytechnique Federale de Lausanne (EPFL), in Lausanne, Switzerland. The meeting focused on the applications of gravitational lensing to cosmological physics, and this book summarizes the most recent theoretical and observational developments. With chapters written by leading scientists in the field, this is a valuable resource for professional astronomers and graduate students in astronomy, physics and astro-particle physics.

Formation of Structure in the Universe

Formation of Structure in the Universe PDF Author: Avishai Dekel
Publisher: Cambridge University Press
ISBN: 9780521586320
Category : Science
Languages : en
Pages : 492

Get Book Here

Book Description
This advanced textbook provides an up-to-date and comprehensive introduction to the very active field of structure formation in cosmology. It is written by eleven world-leading authorities. Written in a clear and pedagogical style appropriate for graduate students in astronomy and physics, this textbook introduces the reader to a wide range of exciting topics in contemporary cosmology: from recent advances in redshift surveys, to the latest models in gravitational lensing and cosmological simulations. The authors are all world-renowned experts both for their research and teaching skills. In the fast-moving field of structure formation, this book provides advanced undergraduate and graduate students with a welcome textbook which unites the latest theory and observations.

Large Scale Structure: Tracks And Traces - Proceedings Of 12th Potsdam Cosmology Workshop

Large Scale Structure: Tracks And Traces - Proceedings Of 12th Potsdam Cosmology Workshop PDF Author: Volker Muller
Publisher: World Scientific
ISBN: 9814544787
Category :
Languages : en
Pages : 418

Get Book Here

Book Description
Understanding the largest physical structures in the universe is essential for the comprehension of the cosmos as a whole. We want to know how our world is formed, what it is made of and how it evolves.Galaxies, as the most visible constituents of the universe, are interesting probes for the cosmic time sequence. Their formation and development provides us with unique clues to the cosmic evolution. This is tightly connected with the hierarchical cosmic structure: groups and clusters of galaxies and their embedding into the large scale structure offer the opportunity to study the dependencies.Galaxy redshift surveys delineate most impressively a large cosmic web, which is composed of sheets and filaments. Grand simulations of the cosmic evolution complement these observations from the theoretical side and allow one quantify and compare various model universes.Quasar absorption line studies, gravitational lensing and even the X-ray background radiation provide important quantitative measures of the history of matter clustering. Finally, the microwave radiation traces very early structures, which are supposed to originate in the phase of inflationary expansion shortly after the big bang.This volume constituting the proceedings of the 12th Potsdam Cosmology Workshop, deals with the basic aspects of cosmological structure formation on the largest physical scales.

Cosmological Physics

Cosmological Physics PDF Author: J. A. Peacock
Publisher: Cambridge University Press
ISBN: 9780521422703
Category : Science
Languages : en
Pages : 700

Get Book Here

Book Description
A comprehensive and authoritative introduction to contemporary cosmology for advanced undergraduate and graduate students.

Modern Cosmology

Modern Cosmology PDF Author: Scott Dodelson
Publisher: Academic Press
ISBN: 0122191412
Category : Science
Languages : en
Pages : 462

Get Book Here

Book Description
An advanced text for senior undergraduates, graduate students and physical scientists in fields outside cosmology. This is a self-contained book focusing on the linear theory of the evolution of density perturbations in the universe, and the anisotropiesin the cosmic microwave background.

Principles of Gravitational Lensing

Principles of Gravitational Lensing PDF Author: Arthur B. Congdon
Publisher: Springer
ISBN: 303002122X
Category : Science
Languages : en
Pages : 292

Get Book Here

Book Description
This textbook provides an introduction to gravitational lensing, which has become an invaluable tool in modern astrophysics, with applications that range from finding planets orbiting distant stars to understanding how dark matter and dark energy conspired to form the cosmic structures we see today. Principles of Gravitational Lensing begins with Einstein’s prediction that gravity bends light, and shows how that fundamental idea has spawned a rich field of study over the past century. The gravitational deflection of light was first detected by Eddington during a solar eclipse in May 1919, launching Einstein and his theory of relativity into public view. Yet the possibility of using the phenomenon to unlock mysteries of the Universe seemed remote, given the technology of the day. Theoretical work was carried out sporadically over the next six decades, but only with the discovery of the system Q0957+561 in 1979 was gravitational lensing transformed from a curiosity of general relativity into a practical observational tool. This book describes how the three subfields known as strong lensing, weak lensing, and microlensing have grown independently but become increasingly intertwined. Drawing on their research experience, Congdon and Keeton begin with the basic physics of light bending, then present the mathematical foundations of gravitational lensing, building up to current research topics in a clear and systematic way. Relevant background material from physics and mathematics is included, making the book self-contained. The derivations and explanations are supplemented by exercises designed to help students master the theoretical concepts as well as the methods that drive current research. An extensive bibliography guides those wishing to delve more deeply into particular areas of interest. Principles of Gravitational Lensing is ideal for advanced students and seasoned researchers looking to penetrate this thriving subject and even contribute research of their own.