Author: National Aeronautics and Space Adm Nasa
Publisher: Independently Published
ISBN: 9781724013927
Category : Science
Languages : en
Pages : 30
Book Description
The U.S. Army Research Laboratory, NASA Glenn Research Center, and Rolls-Royce Allison are working collaboratively to demonstrate the benefits and viability of a wave-rotor-topped gas turbine engine. The self-cooled wave rotor is predicted to increase the engine overall pressure ratio and peak temperature by 300% and 25 to 30%. respectively, providing substantial improvements in engine efficiency and specific power. Such performance improvements would significantly reduce engine emissions and the fuel logistics trails of armed forces. Progress towards a planned demonstration of a wave-rotor-topped Rolls-Royce Allison model 250 engine has included completion of the preliminary design and layout of the engine, the aerodynamic design of the wave rotor component and prediction of its aerodynamic performance characteristics in on- and off-design operation and during transients, and the aerodynamic design of transition ducts between the wave rotor and the high pressure turbine. The topping cycle increases the burner entry temperature and poses a design challenge to be met in the development of the demonstrator engine. Welch, Gerard E. and Paxson, Daniel E. and Wilson, Jack and Synder, Philip H. Glenn Research Center NASA/TM-1999-209459, NAS 1.15:209459, ARL-TR-2113, E-11958
Wave-Rotor-Enhanced Gas Turbine Engine Demonstrator
Author: National Aeronautics and Space Adm Nasa
Publisher: Independently Published
ISBN: 9781724013927
Category : Science
Languages : en
Pages : 30
Book Description
The U.S. Army Research Laboratory, NASA Glenn Research Center, and Rolls-Royce Allison are working collaboratively to demonstrate the benefits and viability of a wave-rotor-topped gas turbine engine. The self-cooled wave rotor is predicted to increase the engine overall pressure ratio and peak temperature by 300% and 25 to 30%. respectively, providing substantial improvements in engine efficiency and specific power. Such performance improvements would significantly reduce engine emissions and the fuel logistics trails of armed forces. Progress towards a planned demonstration of a wave-rotor-topped Rolls-Royce Allison model 250 engine has included completion of the preliminary design and layout of the engine, the aerodynamic design of the wave rotor component and prediction of its aerodynamic performance characteristics in on- and off-design operation and during transients, and the aerodynamic design of transition ducts between the wave rotor and the high pressure turbine. The topping cycle increases the burner entry temperature and poses a design challenge to be met in the development of the demonstrator engine. Welch, Gerard E. and Paxson, Daniel E. and Wilson, Jack and Synder, Philip H. Glenn Research Center NASA/TM-1999-209459, NAS 1.15:209459, ARL-TR-2113, E-11958
Publisher: Independently Published
ISBN: 9781724013927
Category : Science
Languages : en
Pages : 30
Book Description
The U.S. Army Research Laboratory, NASA Glenn Research Center, and Rolls-Royce Allison are working collaboratively to demonstrate the benefits and viability of a wave-rotor-topped gas turbine engine. The self-cooled wave rotor is predicted to increase the engine overall pressure ratio and peak temperature by 300% and 25 to 30%. respectively, providing substantial improvements in engine efficiency and specific power. Such performance improvements would significantly reduce engine emissions and the fuel logistics trails of armed forces. Progress towards a planned demonstration of a wave-rotor-topped Rolls-Royce Allison model 250 engine has included completion of the preliminary design and layout of the engine, the aerodynamic design of the wave rotor component and prediction of its aerodynamic performance characteristics in on- and off-design operation and during transients, and the aerodynamic design of transition ducts between the wave rotor and the high pressure turbine. The topping cycle increases the burner entry temperature and poses a design challenge to be met in the development of the demonstrator engine. Welch, Gerard E. and Paxson, Daniel E. and Wilson, Jack and Synder, Philip H. Glenn Research Center NASA/TM-1999-209459, NAS 1.15:209459, ARL-TR-2113, E-11958
Wave-Rotor-Enhanced Gas Turbine Engine Demonstrator
Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 18
Book Description
The U.S. Army Research Laboratory, NASA Glenn Research Center, and Rolls-Royce Allison are working collaboratively to demonstrate the benefits and viability of a wave-rotor-topped gas turbine engine. The self-cooled wave rotor is predicted to increase the engine overall pressure ratio and peak temperature by 300% and 25 to 30%, respectively, providing substantial improvements in engine efficiency and specific power. Such performance improvements would significantly reduce engine emissions and the fuel logistics trails of armed forces. Progress towards a planned demonstration of a wave-rotor-topped Rolls-Royce Allison model 250 engine has included completion of the preliminary design and layout of the engine, the aerodynamic design of the wave rotor component and prediction of its aerodynamic performance characteristics in on- and off-design operation and during transients, and the aerodynamic design of transition ducts between the wave rotor and the high pressure turbine. The topping cycle increases the burner entry temperature and poses a design challenge to be met in the development of the demonstrator engine.
Publisher:
ISBN:
Category :
Languages : en
Pages : 18
Book Description
The U.S. Army Research Laboratory, NASA Glenn Research Center, and Rolls-Royce Allison are working collaboratively to demonstrate the benefits and viability of a wave-rotor-topped gas turbine engine. The self-cooled wave rotor is predicted to increase the engine overall pressure ratio and peak temperature by 300% and 25 to 30%, respectively, providing substantial improvements in engine efficiency and specific power. Such performance improvements would significantly reduce engine emissions and the fuel logistics trails of armed forces. Progress towards a planned demonstration of a wave-rotor-topped Rolls-Royce Allison model 250 engine has included completion of the preliminary design and layout of the engine, the aerodynamic design of the wave rotor component and prediction of its aerodynamic performance characteristics in on- and off-design operation and during transients, and the aerodynamic design of transition ducts between the wave rotor and the high pressure turbine. The topping cycle increases the burner entry temperature and poses a design challenge to be met in the development of the demonstrator engine.
Integration of a Wave Rotor to an Ultra-micro Gas Turbine (U[mu]GT)
Author: Florin Iancu
Publisher:
ISBN:
Category : Gas-turbines
Languages : en
Pages : 566
Book Description
Publisher:
ISBN:
Category : Gas-turbines
Languages : en
Pages : 566
Book Description
Performance Prediction and Preliminary Design of Wave Rotors Enhancing Gas Turbine Cycles
Author: Pezhman Akbari
Publisher:
ISBN:
Category : Gas-turbines
Languages : en
Pages : 522
Book Description
Publisher:
ISBN:
Category : Gas-turbines
Languages : en
Pages : 522
Book Description
Research & Technology 1997
Author:
Publisher: DIANE Publishing
ISBN: 1428918256
Category :
Languages : en
Pages : 190
Book Description
Publisher: DIANE Publishing
ISBN: 1428918256
Category :
Languages : en
Pages : 190
Book Description
Design Considerations for Micro Wave Disc Engines
Author: Marco Vagani
Publisher:
ISBN:
Category : Internal combustion engines
Languages : en
Pages : 240
Book Description
Publisher:
ISBN:
Category : Internal combustion engines
Languages : en
Pages : 240
Book Description
38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit: 02-4050 - 02-4099
Author:
Publisher:
ISBN:
Category : Airplanes
Languages : en
Pages : 636
Book Description
Publisher:
ISBN:
Category : Airplanes
Languages : en
Pages : 636
Book Description
Dynamic Simulation of a Wave Rotor Topped Turboshaft Engine
Author: R. B. Greendyke
Publisher:
ISBN:
Category :
Languages : en
Pages : 14
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 14
Book Description
Wave Engine Topping Cycle Assessment
Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 20
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 20
Book Description
Scientific and Technical Aerospace Reports
Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 1002
Book Description
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 1002
Book Description