Water Management in Hydraulic Fracturing-a Planning and Decision Optimization Platform

Water Management in Hydraulic Fracturing-a Planning and Decision Optimization Platform PDF Author: Neha Mehta (S.M.)
Publisher:
ISBN:
Category :
Languages : en
Pages : 106

Get Book Here

Book Description
Recent developments in hydraulic fracturing technology have enabled cost-effective production of unconventional resources, particularly shale gas in the U.S. The process of hydraulic fracturing is water intensive, requiring 4-7 million gallons of water per well, to which a range of chemicals must also be added in order to produce an effective fracturing fluid. Following a fracturing stimulation, anywhere from 10-40% of the injected volume of the water flows back to the surface as a polluted stream of wastewater. This polluted stream of water and the overall inefficient use of water in the hydraulic fracturing process has resulted in a number of negative environmental consequences, specifically surrounding ground and surface water quality and quantity. In considering how to minimize the environmental impacts of hydraulic fracturing, effectively managing water throughout the entire hydraulic fracturing water cycle (water acquisition and disposal) is obviously critical. This dissertation articulates a GIS based optimization model that has been developed to optimize water management planning for unconventional oil and gas production. The model enables a diverse set of stakeholders to develop customized water management strategies based on the geological characteristics and water infrastructure of any given play. The model comprises of a front end GIS interface and a back end optimization engine, designed to minimize the overall system cost of water handling as well as minimizing the overall water footprint of the system. Altogether, it is a powerful decision making tool, which allows the operators to optimize and analyze the temporal and spatial variations in flowback, and produced water management and provide an operationally convenient method to access and share the model analysis. From a regulatory perspective, the modeling framework provides a comprehensive template for a water management plan and could be used as a basis to develop tailored, customized regional solutions that can incorporate the inherent heterogeneity widespread across today's oil and gas plays.

Water Management in Hydraulic Fracturing-a Planning and Decision Optimization Platform

Water Management in Hydraulic Fracturing-a Planning and Decision Optimization Platform PDF Author: Neha Mehta (S.M.)
Publisher:
ISBN:
Category :
Languages : en
Pages : 106

Get Book Here

Book Description
Recent developments in hydraulic fracturing technology have enabled cost-effective production of unconventional resources, particularly shale gas in the U.S. The process of hydraulic fracturing is water intensive, requiring 4-7 million gallons of water per well, to which a range of chemicals must also be added in order to produce an effective fracturing fluid. Following a fracturing stimulation, anywhere from 10-40% of the injected volume of the water flows back to the surface as a polluted stream of wastewater. This polluted stream of water and the overall inefficient use of water in the hydraulic fracturing process has resulted in a number of negative environmental consequences, specifically surrounding ground and surface water quality and quantity. In considering how to minimize the environmental impacts of hydraulic fracturing, effectively managing water throughout the entire hydraulic fracturing water cycle (water acquisition and disposal) is obviously critical. This dissertation articulates a GIS based optimization model that has been developed to optimize water management planning for unconventional oil and gas production. The model enables a diverse set of stakeholders to develop customized water management strategies based on the geological characteristics and water infrastructure of any given play. The model comprises of a front end GIS interface and a back end optimization engine, designed to minimize the overall system cost of water handling as well as minimizing the overall water footprint of the system. Altogether, it is a powerful decision making tool, which allows the operators to optimize and analyze the temporal and spatial variations in flowback, and produced water management and provide an operationally convenient method to access and share the model analysis. From a regulatory perspective, the modeling framework provides a comprehensive template for a water management plan and could be used as a basis to develop tailored, customized regional solutions that can incorporate the inherent heterogeneity widespread across today's oil and gas plays.

Neutrosophic Optimization Model and Computational Algorithm for Optimal Shale Gas Water Management under Uncertainty

Neutrosophic Optimization Model and Computational Algorithm for Optimal Shale Gas Water Management under Uncertainty PDF Author: Firoz Ahmad
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 34

Get Book Here

Book Description
Shale gas energy is the most prominent and dominating source of power across the globe. The processes for the extraction of shale gas from shale rocks are very complex. In this study, a multiobjective optimization framework is presented for an overall water management system that includes the allocation of freshwater for hydraulic fracturing and optimal management of the resulting wastewater with different techniques. The generated wastewater from the shale fracking process contains highly toxic chemicals. The optimal control of a massive amount of contaminated water is quite a challenging task.

Plan to Study the Potential Impacts of Hydraulic Fracturing on Drinking Water Resources

Plan to Study the Potential Impacts of Hydraulic Fracturing on Drinking Water Resources PDF Author: U. S. Environmental Agency
Publisher: CreateSpace
ISBN: 9781507587553
Category :
Languages : en
Pages : 190

Get Book Here

Book Description
Natural gas plays a key role in our nation's clean energy future. Recent advances in drilling technologies-including horizontal drilling and hydraulic fracturing-have made vast reserves of natural gas economically recoverable in the US. Responsible development of America's oil and gas resources offers important economic, energy security, and environmental benefits. Hydraulic fracturing is a well stimulation technique used to maximize production of oil and natural gas in unconventional reservoirs, such as shale, coalbeds, and tight sands. During hydraulic fracturing, specially engineered fluids containing chemical additives and proppant are pumped under high pressure into the well to create and hold open fractures in the formation. These fractures increase the exposed surface area of the rock in the formation and, in turn, stimulate the flow of natural gas or oil to the wellbore. As the use of hydraulic fracturing has increased, so have concerns about its potential environmental and human health impacts. Many concerns about hydraulic fracturing center on potential risks to drinking water resources, although other issues have been raised. In response to public concern, the US Congress directed the US Environmental Protection Agency (EPA) to conduct scientific research to examine the relationship between hydraulic fracturing and drinking water resources. This study plan represents an important milestone in responding to the direction from Congress. EPA is committed to conducting a study that uses the best available science, independent sources of information, and a transparent, peer-reviewed process that will ensure the validity and accuracy of the results. The Agency will work in consultation with other federal agencies, state and interstate regulatory agencies, industry, non-governmental organizations, and others in the private and public sector in carrying out this study. Stakeholder outreach as the study is being conducted will continue to be a hallmark of our efforts, just as it was during the development of this study plan. The overall purpose of this study is to elucidate the relationship, if any, between hydraulic fracturing and drinking water resources. More specifically, the study has been designed to assess the potential impacts of hydraulic fracturing on drinking water resources and to identify the driving factors that affect the severity and frequency of any impacts. Based on the increasing development of shale gas resources in the US, and the comments EPA received from stakeholders, this study emphasizes hydraulic fracturing in shale formations. Portions of the research, however, are also intended to provide information on hydraulic fracturing in coalbed methane and tight sand reservoirs. The scope of the research includes the hydraulic fracturing water use lifecycle, which is a subset of the greater hydrologic cycle. For the purposes of this study, the hydraulic fracturing water lifecycle begins with water acquisition from surface or ground water and ends with discharge into surface waters or injection into deep wells. Specifically, the water lifecycle for hydraulic fracturing consists of water acquisition, chemical mixing, well injection, flowback and produced water (collectively referred to as "hydraulic fracturing wastewater"), and wastewater treatment and waste disposal.

Study of the Potential Impacts of Hydraulic Fracturing on Drinking Water Resources

Study of the Potential Impacts of Hydraulic Fracturing on Drinking Water Resources PDF Author: U. S. Environmental Agency
Publisher: CreateSpace
ISBN: 9781507587270
Category :
Languages : en
Pages : 276

Get Book Here

Book Description
Natural gas plays a key role in our nation's clean energy future. The United States has vast reserves of natural gas that are commercially viable as a result of advances in horizontal drilling and hydraulic fracturing technologies, which enable greater access to gas in rock formations deep underground. These advances have spurred a significant increase in the production of both natural gas and oil across the country. Responsible development of America's oil and gas resources offers important economic, energy security, and environmental benefits. However, as the use of hydraulic fracturing has increased, so have concerns about its potential human health and environmental impacts, especially for drinking water. In response to public concern, the US House of Representatives requested that the US Environmental Protection Agency (EPA) conduct scientific research to examine the relationship between hydraulic fracturing and drinking water resources. In 2011, the EPA began research under its Plan to Study the Potential Impacts of Hydraulic Fracturing on Drinking Water Resources. The purpose of the study is to assess the potential impacts of hydraulic fracturing on drinking water resources, if any, and to identify the driving factors that may affect the severity and frequency of such impacts. Scientists are focusing primarily on hydraulic fracturing of shale formations to extract natural gas, with some study of other oil-and gas-producing formations, including tight sands, and coalbeds. The EPA has designed the scope of the research around five stages of the hydraulic fracturing water cycle. Each stage of the cycle is associated with a primary research question: Water acquisition: What are the possible impacts of large volume water withdrawals from ground and surface waters on drinking water resources? Chemical mixing: What are the possible impacts of hydraulic fracturing fluid surface spills on or near well pads on drinking water resources? Well injection: What are the possible impacts of the injection and fracturing process on drinking water resources? Flowback and produced water: What are the possible impacts of flowback and produced water (collectively referred to as "hydraulic fracturing wastewater") surface spills on or near well pads on drinking water resources? Wastewater treatment and waste disposal: What are the possible impacts of inadequate treatment of hydraulic fracturing wastewater on drinking water resources? This report describes 18 research projects underway to answer these research questions and presents the progress made as of September 2012 for each of the projects. Information presented as part of this report cannot be used to draw conclusions about potential impacts to drinking water resources from hydraulic fracturing. The research projects are organized according to five different types of research activities: analysis of existing data, scenario evaluations, laboratory studies, toxicity assessments, and case studies.

Draft Plan to Study the Potential Impacts of Hydraulic Fracturing on Drinking Water Resources

Draft Plan to Study the Potential Impacts of Hydraulic Fracturing on Drinking Water Resources PDF Author:
Publisher: DIANE Publishing
ISBN: 1437981402
Category :
Languages : en
Pages : 140

Get Book Here

Book Description


Offshore Well Completion and Stimulation

Offshore Well Completion and Stimulation PDF Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 030949236X
Category : Science
Languages : en
Pages : 87

Get Book Here

Book Description
While the public is generally aware of the use of hydraulic fracturing for unconventional resource development onshore, it is less familiar with the well completion and stimulation technologies used in offshore operations, including hydraulic fracturing, gravel packs, "fracpacks," and acid stimulation. Just as onshore technologies have improved, these well completion and stimulation technologies for offshore hydrocarbon resource development have progressed over many decades. To increase public understanding of these technologies, the National Academies of Sciences, Engineering, and Medicine established a planning committee to organize and convene a workshop on Offshore Well Completion and Stimulation: Using Hydraulic Fracturing and Other Technologies on October 2-3, 2017, in Washington, DC. This workshop examined the unique features about operating in the U.S. offshore environment, including well completion and stimulation technologies, environmental considerations and concerns, and health and safety management. Participants from across government, industry, academia, and nonprofit sectors shared their perspectives on operational and regulatory approaches to mitigating risks to the environment and to humans in the development of offshore resources. This publication summarizes the presentations and discussions from the workshop.

Review of Hydraulic Fracturing Technology and Practices

Review of Hydraulic Fracturing Technology and Practices PDF Author: United States. Congress. House. Committee on Science, Space, and Technology (2011)
Publisher:
ISBN:
Category : Business & Economics
Languages : en
Pages : 160

Get Book Here

Book Description


Optimization of Multistage Hydraulic Fracturing Treatment for Maximization of the Tight Gas Productivity

Optimization of Multistage Hydraulic Fracturing Treatment for Maximization of the Tight Gas Productivity PDF Author: Mengting Li
Publisher: Cuvillier Verlag
ISBN: 3736989342
Category : Technology & Engineering
Languages : en
Pages : 208

Get Book Here

Book Description
Hydraulic fracturing is essential technology for the development of unconventional resources such as tight gas. So far, there are no numerical tools which can optimize the whole process from geological modeling, hydraulic fracturing until production simulation with the same 3D model with consideration of the thermo-hydro-mechanical coupling. In this dissertation, a workflow and a numerical tool chain were developed for design and optimization of multistage hydraulic fracturing in horizontal well regarding a maximum productivity of the tight gas wellbore. After the verification a full 3D reservoir model is generated based on a real tight gas field in the North German Basin. Through analysis of simulation results, a new calculation formula of FCD was proposed, which takes the proppant position and concentration into account and can predict the gas production rate more accurately. However, not only FCD but also proppant distribution and hydraulic connection of stimulated fractures to the well, geological structure and the interaction between fractures are determinant for the gas production volume. Through analysis the numerical results of sensitivity analysis and optimization variations, there is no unique criterion to determine the optimal number and spacing of the fractures, it should be analyzed firstly in detail to the actual situation and decided then from case to case.

The Effects of Induced Hydraulic Fracturing on the Environment

The Effects of Induced Hydraulic Fracturing on the Environment PDF Author: Matthew McBroom
Publisher: CRC Press
ISBN: 1926895835
Category : Science
Languages : en
Pages : 363

Get Book Here

Book Description
Hydraulic fracturing, or "fracking" as it is commonly known, refers to the practice of using liquids at very high pressures to fragment rock, thereby allowing natural gas to be harvested. This process increases energy resources but also has some negative environmental impacts as well. This book looks at the environmental impact. The first section looks at fracturing and the water supply, the second section looks at ecosystems and wildlife, while the final section examines the possible effects on human ecosystems and human health.

Regulating Water Security in Unconventional Oil and Gas

Regulating Water Security in Unconventional Oil and Gas PDF Author: Regina M. Buono
Publisher: Springer Nature
ISBN: 3030183424
Category : Business & Economics
Languages : en
Pages : 418

Get Book Here

Book Description
This book addresses the need for deeper understanding of regulatory and policy regimes around the world in relation to the use of water for the production of ‘unconventional’ hydrocarbons, including shale gas, coal bed methane and tight oil, through hydraulic fracturing. Legal, policy, political and regulatory issues surrounding the use of water for hydraulic fracturing are present at every stage of operations. Operators and regulators must understand the legal, political and hydrological contexts of their surroundings, procure water for use in the fracturing and extraction processes, gain community cooperation or confront social resistance around water, collect flow back and produced water, and dispose of these wastewaters safely. By analysing and comparing different approaches to these issues from around the globe, this volume gleans insights into how policy, best practices and regulation may be developed to advance the interests of all stakeholders. While it is not always possible to easily transfer ‘good practice’ from one place to another, there is value in examining and understanding the components of different legal and regulatory regimes, as these may assist in the development of better regulatory law and policy for the rapidly growing unconventional energy sector. The book takes an interdisciplinary approach and includes chapters looking at water-energy nexus security in general, along with issue-focused and geographically-focused case studies written by scholars from around the world. Chapter topics, organized in conjunction with the stage of the shale gas production process upon which they touch, include the implications of hydraulic fracturing for agriculture, municipalities, and other stakeholders competing for water supplies; public opinion regarding use of water for hydraulic fracturing; potential conflicts between hydraulic fracturing and water as a human right; prevention of induced seismic activity, and the disposal or recycling of produced water. Several chapters also discuss implications of unconventional energy production for indigenous communities, particularly as regards sustainable water management. This volume will be of interest to scholars and students of energy and water, regulators and policymakers and operators interested in ensuring that they align with emergent best global practice.