Author: Hitoshi Murakami
Publisher: Springer
ISBN: 9811311501
Category : Science
Languages : en
Pages : 126
Book Description
The volume conjecture states that a certain limit of the colored Jones polynomial of a knot in the three-dimensional sphere would give the volume of the knot complement. Here the colored Jones polynomial is a generalization of the celebrated Jones polynomial and is defined by using a so-called R-matrix that is associated with the N-dimensional representation of the Lie algebra sl(2;C). The volume conjecture was first stated by R. Kashaev in terms of his own invariant defined by using the quantum dilogarithm. Later H. Murakami and J. Murakami proved that Kashaev’s invariant is nothing but the N-dimensional colored Jones polynomial evaluated at the Nth root of unity. Then the volume conjecture turns out to be a conjecture that relates an algebraic object, the colored Jones polynomial, with a geometric object, the volume. In this book we start with the definition of the colored Jones polynomial by using braid presentations of knots. Then we state the volume conjecture and give a very elementary proof of the conjecture for the figure-eight knot following T. Ekholm. We then give a rough idea of the “proof”, that is, we show why we think the conjecture is true at least in the case of hyperbolic knots by showing how the summation formula for the colored Jones polynomial “looks like” the hyperbolicity equations of the knot complement. We also describe a generalization of the volume conjecture that corresponds to a deformation of the complete hyperbolic structure of a knot complement. This generalization would relate the colored Jones polynomial of a knot to the volume and the Chern–Simons invariant of a certain representation of the fundamental group of the knot complement to the Lie group SL(2;C). We finish by mentioning further generalizations of the volume conjecture.
Volume Conjecture for Knots
Author: Hitoshi Murakami
Publisher: Springer
ISBN: 9811311501
Category : Science
Languages : en
Pages : 126
Book Description
The volume conjecture states that a certain limit of the colored Jones polynomial of a knot in the three-dimensional sphere would give the volume of the knot complement. Here the colored Jones polynomial is a generalization of the celebrated Jones polynomial and is defined by using a so-called R-matrix that is associated with the N-dimensional representation of the Lie algebra sl(2;C). The volume conjecture was first stated by R. Kashaev in terms of his own invariant defined by using the quantum dilogarithm. Later H. Murakami and J. Murakami proved that Kashaev’s invariant is nothing but the N-dimensional colored Jones polynomial evaluated at the Nth root of unity. Then the volume conjecture turns out to be a conjecture that relates an algebraic object, the colored Jones polynomial, with a geometric object, the volume. In this book we start with the definition of the colored Jones polynomial by using braid presentations of knots. Then we state the volume conjecture and give a very elementary proof of the conjecture for the figure-eight knot following T. Ekholm. We then give a rough idea of the “proof”, that is, we show why we think the conjecture is true at least in the case of hyperbolic knots by showing how the summation formula for the colored Jones polynomial “looks like” the hyperbolicity equations of the knot complement. We also describe a generalization of the volume conjecture that corresponds to a deformation of the complete hyperbolic structure of a knot complement. This generalization would relate the colored Jones polynomial of a knot to the volume and the Chern–Simons invariant of a certain representation of the fundamental group of the knot complement to the Lie group SL(2;C). We finish by mentioning further generalizations of the volume conjecture.
Publisher: Springer
ISBN: 9811311501
Category : Science
Languages : en
Pages : 126
Book Description
The volume conjecture states that a certain limit of the colored Jones polynomial of a knot in the three-dimensional sphere would give the volume of the knot complement. Here the colored Jones polynomial is a generalization of the celebrated Jones polynomial and is defined by using a so-called R-matrix that is associated with the N-dimensional representation of the Lie algebra sl(2;C). The volume conjecture was first stated by R. Kashaev in terms of his own invariant defined by using the quantum dilogarithm. Later H. Murakami and J. Murakami proved that Kashaev’s invariant is nothing but the N-dimensional colored Jones polynomial evaluated at the Nth root of unity. Then the volume conjecture turns out to be a conjecture that relates an algebraic object, the colored Jones polynomial, with a geometric object, the volume. In this book we start with the definition of the colored Jones polynomial by using braid presentations of knots. Then we state the volume conjecture and give a very elementary proof of the conjecture for the figure-eight knot following T. Ekholm. We then give a rough idea of the “proof”, that is, we show why we think the conjecture is true at least in the case of hyperbolic knots by showing how the summation formula for the colored Jones polynomial “looks like” the hyperbolicity equations of the knot complement. We also describe a generalization of the volume conjecture that corresponds to a deformation of the complete hyperbolic structure of a knot complement. This generalization would relate the colored Jones polynomial of a knot to the volume and the Chern–Simons invariant of a certain representation of the fundamental group of the knot complement to the Lie group SL(2;C). We finish by mentioning further generalizations of the volume conjecture.
The Knot Book
Author: Colin Conrad Adams
Publisher: American Mathematical Soc.
ISBN: 0821836781
Category : Mathematics
Languages : en
Pages : 330
Book Description
Knots are familiar objects. Yet the mathematical theory of knots quickly leads to deep results in topology and geometry. This work offers an introduction to this theory, starting with our understanding of knots. It presents the applications of knot theory to modern chemistry, biology and physics.
Publisher: American Mathematical Soc.
ISBN: 0821836781
Category : Mathematics
Languages : en
Pages : 330
Book Description
Knots are familiar objects. Yet the mathematical theory of knots quickly leads to deep results in topology and geometry. This work offers an introduction to this theory, starting with our understanding of knots. It presents the applications of knot theory to modern chemistry, biology and physics.
Hyperbolic Knot Theory
Author: Jessica S. Purcell
Publisher: American Mathematical Soc.
ISBN: 1470454998
Category : Education
Languages : en
Pages : 392
Book Description
This book provides an introduction to hyperbolic geometry in dimension three, with motivation and applications arising from knot theory. Hyperbolic geometry was first used as a tool to study knots by Riley and then Thurston in the 1970s. By the 1980s, combining work of Mostow and Prasad with Gordon and Luecke, it was known that a hyperbolic structure on a knot complement in the 3-sphere gives a complete knot invariant. However, it remains a difficult problem to relate the hyperbolic geometry of a knot to other invariants arising from knot theory. In particular, it is difficult to determine hyperbolic geometric information from a knot diagram, which is classically used to describe a knot. This textbook provides background on these problems, and tools to determine hyperbolic information on knots. It also includes results and state-of-the art techniques on hyperbolic geometry and knot theory to date. The book was written to be interactive, with many examples and exercises. Some important results are left to guided exercises. The level is appropriate for graduate students with a basic background in algebraic topology, particularly fundamental groups and covering spaces. Some experience with some differential topology and Riemannian geometry will also be helpful.
Publisher: American Mathematical Soc.
ISBN: 1470454998
Category : Education
Languages : en
Pages : 392
Book Description
This book provides an introduction to hyperbolic geometry in dimension three, with motivation and applications arising from knot theory. Hyperbolic geometry was first used as a tool to study knots by Riley and then Thurston in the 1970s. By the 1980s, combining work of Mostow and Prasad with Gordon and Luecke, it was known that a hyperbolic structure on a knot complement in the 3-sphere gives a complete knot invariant. However, it remains a difficult problem to relate the hyperbolic geometry of a knot to other invariants arising from knot theory. In particular, it is difficult to determine hyperbolic geometric information from a knot diagram, which is classically used to describe a knot. This textbook provides background on these problems, and tools to determine hyperbolic information on knots. It also includes results and state-of-the art techniques on hyperbolic geometry and knot theory to date. The book was written to be interactive, with many examples and exercises. Some important results are left to guided exercises. The level is appropriate for graduate students with a basic background in algebraic topology, particularly fundamental groups and covering spaces. Some experience with some differential topology and Riemannian geometry will also be helpful.
Handbook of Knot Theory
Author: William Menasco
Publisher: Elsevier
ISBN: 9780080459547
Category : Mathematics
Languages : en
Pages : 502
Book Description
This book is a survey of current topics in the mathematical theory of knots. For a mathematician, a knot is a closed loop in 3-dimensional space: imagine knotting an extension cord and then closing it up by inserting its plug into its outlet. Knot theory is of central importance in pure and applied mathematics, as it stands at a crossroads of topology, combinatorics, algebra, mathematical physics and biochemistry. * Survey of mathematical knot theory * Articles by leading world authorities * Clear exposition, not over-technical * Accessible to readers with undergraduate background in mathematics
Publisher: Elsevier
ISBN: 9780080459547
Category : Mathematics
Languages : en
Pages : 502
Book Description
This book is a survey of current topics in the mathematical theory of knots. For a mathematician, a knot is a closed loop in 3-dimensional space: imagine knotting an extension cord and then closing it up by inserting its plug into its outlet. Knot theory is of central importance in pure and applied mathematics, as it stands at a crossroads of topology, combinatorics, algebra, mathematical physics and biochemistry. * Survey of mathematical knot theory * Articles by leading world authorities * Clear exposition, not over-technical * Accessible to readers with undergraduate background in mathematics
Formal Knot Theory
Author: Louis H. Kauffman
Publisher: Courier Corporation
ISBN: 048645052X
Category : Mathematics
Languages : en
Pages : 274
Book Description
This exploration of combinatorics and knot theory is geared toward advanced undergraduates and graduate students. The author, Louis H. Kauffman, is a professor in the Department of Mathematics, Statistics, and Computer Science at the University of Illinois at Chicago. Kauffman draws upon his work as a topologist to illustrate the relationships between knot theory and statistical mechanics, quantum theory, and algebra, as well as the role of knot theory in combinatorics. Featured topics include state, trails, and the clock theorem; state polynomials and the duality conjecture; knots and links; axiomatic link calculations; spanning surfaces; the genus of alternative links; and ribbon knots and the Arf invariant. Key concepts are related in easy-to-remember terms, and numerous helpful diagrams appear throughout the text. The author has provided a new supplement, entitled "Remarks on Formal Knot Theory," as well as his article, "New Invariants in the Theory of Knots," first published in The American Mathematical Monthly, March 1988.
Publisher: Courier Corporation
ISBN: 048645052X
Category : Mathematics
Languages : en
Pages : 274
Book Description
This exploration of combinatorics and knot theory is geared toward advanced undergraduates and graduate students. The author, Louis H. Kauffman, is a professor in the Department of Mathematics, Statistics, and Computer Science at the University of Illinois at Chicago. Kauffman draws upon his work as a topologist to illustrate the relationships between knot theory and statistical mechanics, quantum theory, and algebra, as well as the role of knot theory in combinatorics. Featured topics include state, trails, and the clock theorem; state polynomials and the duality conjecture; knots and links; axiomatic link calculations; spanning surfaces; the genus of alternative links; and ribbon knots and the Arf invariant. Key concepts are related in easy-to-remember terms, and numerous helpful diagrams appear throughout the text. The author has provided a new supplement, entitled "Remarks on Formal Knot Theory," as well as his article, "New Invariants in the Theory of Knots," first published in The American Mathematical Monthly, March 1988.
Knots and Links
Author: Dale Rolfsen
Publisher: American Mathematical Soc.
ISBN: 0821834363
Category : Mathematics
Languages : en
Pages : 458
Book Description
Rolfsen's beautiful book on knots and links can be read by anyone, from beginner to expert, who wants to learn about knot theory. Beginners find an inviting introduction to the elements of topology, emphasizing the tools needed for understanding knots, the fundamental group and van Kampen's theorem, for example, which are then applied to concrete problems, such as computing knot groups. For experts, Rolfsen explains advanced topics, such as the connections between knot theory and surgery and how they are useful to understanding three-manifolds. Besides providing a guide to understanding knot theory, the book offers 'practical' training. After reading it, you will be able to do many things: compute presentations of knot groups, Alexander polynomials, and other invariants; perform surgery on three-manifolds; and visualize knots and their complements.It is characterized by its hands-on approach and emphasis on a visual, geometric understanding. Rolfsen offers invaluable insight and strikes a perfect balance between giving technical details and offering informal explanations. The illustrations are superb, and a wealth of examples are included. Now back in print by the AMS, the book is still a standard reference in knot theory. It is written in a remarkable style that makes it useful for both beginners and researchers. Particularly noteworthy is the table of knots and links at the end. This volume is an excellent introduction to the topic and is suitable as a textbook for a course in knot theory or 3-manifolds. Other key books of interest on this topic available from the AMS are ""The Shoelace Book: A Mathematical Guide to the Best (and Worst) Ways to Lace your Shoes"" and ""The Knot Book.""
Publisher: American Mathematical Soc.
ISBN: 0821834363
Category : Mathematics
Languages : en
Pages : 458
Book Description
Rolfsen's beautiful book on knots and links can be read by anyone, from beginner to expert, who wants to learn about knot theory. Beginners find an inviting introduction to the elements of topology, emphasizing the tools needed for understanding knots, the fundamental group and van Kampen's theorem, for example, which are then applied to concrete problems, such as computing knot groups. For experts, Rolfsen explains advanced topics, such as the connections between knot theory and surgery and how they are useful to understanding three-manifolds. Besides providing a guide to understanding knot theory, the book offers 'practical' training. After reading it, you will be able to do many things: compute presentations of knot groups, Alexander polynomials, and other invariants; perform surgery on three-manifolds; and visualize knots and their complements.It is characterized by its hands-on approach and emphasis on a visual, geometric understanding. Rolfsen offers invaluable insight and strikes a perfect balance between giving technical details and offering informal explanations. The illustrations are superb, and a wealth of examples are included. Now back in print by the AMS, the book is still a standard reference in knot theory. It is written in a remarkable style that makes it useful for both beginners and researchers. Particularly noteworthy is the table of knots and links at the end. This volume is an excellent introduction to the topic and is suitable as a textbook for a course in knot theory or 3-manifolds. Other key books of interest on this topic available from the AMS are ""The Shoelace Book: A Mathematical Guide to the Best (and Worst) Ways to Lace your Shoes"" and ""The Knot Book.""
Grid Homology for Knots and Links
Author: Peter S. Ozsváth
Publisher: American Mathematical Soc.
ISBN: 1470434423
Category : Education
Languages : en
Pages : 423
Book Description
Starting from the combinatorial point of view on knots using their grid diagrams, this book serves as an introduction to knot theory. After a brief overview of the background material in the subject, the book gives a self-contained treatment of knot Floer homology from the point of view of grid diagrams.
Publisher: American Mathematical Soc.
ISBN: 1470434423
Category : Education
Languages : en
Pages : 423
Book Description
Starting from the combinatorial point of view on knots using their grid diagrams, this book serves as an introduction to knot theory. After a brief overview of the background material in the subject, the book gives a self-contained treatment of knot Floer homology from the point of view of grid diagrams.
Ideal Knots
Author: Andrzej Stasiak
Publisher: World Scientific
ISBN: 9810235305
Category : Mathematics
Languages : en
Pages : 426
Book Description
In this book, experts in different fields of mathematics, physics, chemistry and biology present unique forms of knots which satisfy certain preassigned criteria relevant to a given field. They discuss the shapes of knotted magnetic flux lines, the forms of knotted arrangements of bistable chemical systems, the trajectories of knotted solitons, and the shapes of knots which can be tied using the shortest piece of elastic rope with a constant diameter.
Publisher: World Scientific
ISBN: 9810235305
Category : Mathematics
Languages : en
Pages : 426
Book Description
In this book, experts in different fields of mathematics, physics, chemistry and biology present unique forms of knots which satisfy certain preassigned criteria relevant to a given field. They discuss the shapes of knotted magnetic flux lines, the forms of knotted arrangements of bistable chemical systems, the trajectories of knotted solitons, and the shapes of knots which can be tied using the shortest piece of elastic rope with a constant diameter.
Primes and Knots
Author: Toshitake Kohno
Publisher: American Mathematical Soc.
ISBN: 0821834568
Category : Mathematics
Languages : en
Pages : 298
Book Description
This volume deals systematically with connections between algebraic number theory and low-dimensional topology. Of particular note are various inspiring interactions between number theory and low-dimensional topology discussed in most papers in this volume. For example, quite interesting are the use of arithmetic methods in knot theory and the use of topological methods in Galois theory. Also, expository papers in both number theory and topology included in the volume can help a wide group of readers to understand both fields as well as the interesting analogies and relations that bring them together.
Publisher: American Mathematical Soc.
ISBN: 0821834568
Category : Mathematics
Languages : en
Pages : 298
Book Description
This volume deals systematically with connections between algebraic number theory and low-dimensional topology. Of particular note are various inspiring interactions between number theory and low-dimensional topology discussed in most papers in this volume. For example, quite interesting are the use of arithmetic methods in knot theory and the use of topological methods in Galois theory. Also, expository papers in both number theory and topology included in the volume can help a wide group of readers to understand both fields as well as the interesting analogies and relations that bring them together.
Introduction to Vassiliev Knot Invariants
Author: S. Chmutov
Publisher: Cambridge University Press
ISBN: 1107020832
Category : Mathematics
Languages : en
Pages : 521
Book Description
A detailed exposition of the theory with an emphasis on its combinatorial aspects.
Publisher: Cambridge University Press
ISBN: 1107020832
Category : Mathematics
Languages : en
Pages : 521
Book Description
A detailed exposition of the theory with an emphasis on its combinatorial aspects.