Voltage Regulators for Next Generation Microprocessors

Voltage Regulators for Next Generation Microprocessors PDF Author: Toni López
Publisher: Springer Science & Business Media
ISBN: 1441975608
Category : Technology & Engineering
Languages : en
Pages : 421

Get Book Here

Book Description
This book deals with energy delivery challenges of the power processing unit of modern computer microprocessors. It describes in detail the consequences of current trends in miniaturization and clock frequency increase, upon the power delivery unit, referred to as voltage regulator. This is an invaluable reference for anybody needing to understand the key performance limitations and opportunities for improvement, from both a circuit and systems perspective, of state-of-the-art power solutions for next generation CPUs.

Voltage Regulators for Next Generation Microprocessors

Voltage Regulators for Next Generation Microprocessors PDF Author: Toni López
Publisher: Springer Science & Business Media
ISBN: 1441975608
Category : Technology & Engineering
Languages : en
Pages : 421

Get Book Here

Book Description
This book deals with energy delivery challenges of the power processing unit of modern computer microprocessors. It describes in detail the consequences of current trends in miniaturization and clock frequency increase, upon the power delivery unit, referred to as voltage regulator. This is an invaluable reference for anybody needing to understand the key performance limitations and opportunities for improvement, from both a circuit and systems perspective, of state-of-the-art power solutions for next generation CPUs.

Voltage Regulators for Next Generation Microprocessors

Voltage Regulators for Next Generation Microprocessors PDF Author: Toni Lopez
Publisher:
ISBN: 9781441975614
Category :
Languages : en
Pages : 428

Get Book Here

Book Description


Prospects of Voltage Regulators for Next Generation Computer Microprocessors

Prospects of Voltage Regulators for Next Generation Computer Microprocessors PDF Author: Toni López Julià
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Transient Response Improvement for Multi-phase Voltage Regulators

Transient Response Improvement for Multi-phase Voltage Regulators PDF Author: Shangyang Xiao
Publisher:
ISBN:
Category : Power electronics
Languages : en
Pages : 188

Get Book Here

Book Description
Next generation microprocessor (Vcore) requirements for high current slew rates and fast transient response together with low output voltage have posed great challenges on voltage regulator (VR) design (1). Since the debut of Intel 80X86 series, CPUs have greatly improved in performance with a dramatic increase on power consumption. According to the latest Intel VR11 design guidelines (2), the operational current may ramp up to 140A with typical voltages in the 1.1V to 1.4V range, while the slew rate of the transient current can be as high as 1.9A/ns (1, 2). Meanwhile, the transient-response requirements are becoming stringer and stringer. This dissertation presents several topics on how to improve transient response for multi-phase voltage regulators. The Adaptive Modulation Control (AMC) is a type of non-linear control method which has proven to be effective in achieving high bandwidth designs as well as stabilizing the control loop during large load transients. It adaptively adjusts control bandwidth by changing the modulation gain, depending on different load conditions. With the AMC, a multiphase voltage regulator can be designed with an aggressively high bandwidth. When in heavy load transients where the loop could be potentially unstable, the bandwidth is lowered. Therefore, the AMC provides an optimal means for robust high-bandwidth design with excellent transient performance. The Error Amplifier Voltage Positioning (EAVP) is proposed to improve transient response by removing undesired spikes and dips after initial transient response. The EAVP works only in a short period of time during transient events without modifying the power stage and changing the control loop gain. It facilitates the error amplifier voltage recovering during transient events, achieving a fast settling time without impact on the whole control loop. Coupled inductors are an emerging topology for computing power supplies as VRs with coupled inductors show dynamic and steady-state advantages over traditional VRs. This dissertation first covers the coupling mechanism in terms of both electrical and reluctance modeling. Since the magnetizing inductance plays an important role in the coupled-inductor operation, a unified State-Space Averaging model (3) is then built for a two-phase coupled-inductor voltage regulator. The DC solutions of the phase currents are derived in order to show the impact of the magnetizing inductance on phase current balancing. A small signal model is obtained based on the state-space-averaging model. The effects of magnetizing inductance on dynamic performance are presented. The limitations of conventional DCR current-sensing for coupled inductors are addressed. Traditional inductor DCR current sensing topology and prior arts fail to extract phase currents for coupled inductors. Two new DCR current sensing topologies for coupled inductors are presented in this dissertation. By implementation of simple RC networks, the proposed topologies can preserve the coupling effect between phases. As a result, accurate phase inductor currents and total current can be sensed, resulting in excellent current and voltage regulation. While coupled-inductor topologies are showing advantages in transient response and are becoming industry practices, they are suffering from low steady-state operating efficiency. Motivated by the challenging transient and efficiency requirements, this dissertation proposes a Full Bridge Coupled Inductor (FBCI) scheme which is able to improve transient response as well as savor high efficiency at (a) steady state. The FBCI can change the circuit configuration under different operational conditions. Its "flexible" topology is able to optimize both transient response and steady-state efficiency. The flexible core configuration makes implementation easy and clear of IP issues. A novel design methodology for planar magnetics based on numerical analysis of electromagnetic fields is offered and successfully applied to the design of low-voltage high power density dc-dc converters. The design methodology features intense use of FEM simulation. The design issues of planar magnetics, including loss mechanism in copper and core, winding design on PCB, core selections, winding arrangements and so on are first reviewed. After that, FEM simulators are introduced to numerically compute the core loss and winding loss. Consequently, a software platform for magnetics design is established, and optimized magnetics can then be achieved. Dynamic voltage scaling (DVS) technology is a common industry practice in optimizing power consumption of microprocessors by dynamically altering the supply voltage under different operational modes, while maintaining the performance requirements. During DVS operation, it is desirable to position the output voltage to a new level commanded by the microprocessor (CPU) with minimum delay. However, voltage deviation and slow settling time usually exist due to large output capacitance and compensation delay in voltage regulators. Although optimal DVS can be achieved by modifying the output capacitance and compensation, this method is limited by constraints from stringent static and dynamic requirements. In this dissertation, the effects of output capacitance and compensation network on DVS operation are discussed in detail. An active compensator scheme is then proposed to ensure smooth transition of the output voltage without change of power stage and compensation during DVS. Simulation and experimental results are included to demonstrate the effectiveness of the proposed scheme.

9th International Conference on Robotic, Vision, Signal Processing and Power Applications

9th International Conference on Robotic, Vision, Signal Processing and Power Applications PDF Author: Haidi Ibrahim
Publisher: Springer
ISBN: 9811017212
Category : Technology & Engineering
Languages : en
Pages : 821

Get Book Here

Book Description
The proceeding is a collection of research papers presented, at the 9th International Conference on Robotics, Vision, Signal Processing & Power Applications (ROVISP 2016), by researchers, scientists, engineers, academicians as well as industrial professionals from all around the globe to present their research results and development activities for oral or poster presentations. The topics of interest are as follows but are not limited to: • Robotics, Control, Mechatronics and Automation • Vision, Image, and Signal Processing • Artificial Intelligence and Computer Applications • Electronic Design and Applications • Telecommunication Systems and Applications • Power System and Industrial Applications • Engineering Education

Voltage Regulator Module (VRM) for Future Computer Microprocessors Design and Development

Voltage Regulator Module (VRM) for Future Computer Microprocessors Design and Development PDF Author: Poh Kim Sim
Publisher:
ISBN:
Category : Microprocessors
Languages : en
Pages :

Get Book Here

Book Description


Low-voltage High-efficiency Fast-transient Voltage Regulator Module

Low-voltage High-efficiency Fast-transient Voltage Regulator Module PDF Author: Xunwei Zhou
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
In order to meet demands for faster and more efficient data processing, modern microprocessors are being designed with lower voltage implementations. The processor voltage supply in future generation processors will decrease to 1.1 V 1.8V. More devices will be packed on a single processor chip, and processors will operate at higher frequencies, beyond 1GHz. Therefore, microprocessors need aggressive power management. Future generation processors will draw current up to 50 A 100 A [2]. These demands, in turn, will require special power supplies and Voltage Regulator Modules (VRMs) to provide lower voltages with higher currents and fast transient capabilities for microprocessors. This work presents several low-voltage high-current VRM technologies for future generation data processing, communication, and portable applications. The developed advanced VRMs with these new technologies have advantages over conventional ones in power density, efficiency, transient response, reliability, and cost. The multi-module interleaved quasi-square-wave VRM topology achieves a very fast transient response and a very high power density. This topology significantly reduces the filter inductance and capacitance, while having small output and input ripples. The analysis, design, and experimental verification for this new topology are presented in this work. The current sensing and current sharing techniques are developed with simple and cost-effective implementations. With this technique, traditional current transformers and sensing resistors are not required, and the inductance value, MOSFET on resistance and other parasitics have no effect on current sharing results. The design principles are developed and experimentally verified. A generalized approach and an extension of the novel current sharing control are presented in this work. The techniques for improving VRM light load efficiency are developed in this work.

Topologies and Modelings of Novel Bipolar Gate Driver Techniques for Next-generation High Frequency Voltage Regulators

Topologies and Modelings of Novel Bipolar Gate Driver Techniques for Next-generation High Frequency Voltage Regulators PDF Author: Jizhen Fu
Publisher:
ISBN:
Category :
Languages : en
Pages : 218

Get Book Here

Book Description
As is predicted by Moore's law, the transistors in microprocessors increase dramatically. In order to increase the power density of the microprocessors, the switching frequency of the Voltage Regulator (VR) is expected to increase to MHz level. However, the frequency dependent loss will increase proportionally. In order to meet requirements of the next-generation microprocessors, three new ideas are proposed in this thesis. The first contribution is a new bipolar Current Source Driver (CSD) for high frequency power MOSFET. The proposed CSD alleviates the gate current diversion problem of the existing CSDs by clamping the gate voltage to a flexible negative value during turn off transition. Therefore, the proposed driver turns off the MOSFET much faster. For buck converters with 12 V input at 1MHz switching frequency, the proposed driver improves the efficiency from 80.5% using the existing CSD to 82.5% at 1.2V/30A, and at 1.3V/30A output, from 82.5% to 83.9%. The second contribution is an accurate analytical loss model of a power MOSFET with a CSD. The current diversion problem that commonly exists in CSDs is investigated mathematically. The inductor value of the CSD is optimized to achieve minimum loss for the synchronous buck converter. The experimentally measured loss matches the calculated loss very well. The efficiency with the optimal CSD inductor is improved from 86.1% to 87.6% at 12V input, 1.3V/20A output in 1MHz switching frequency and from 82.4% to 84.0% at 1.3V/30A output. The third contribution is a new inductorless bipolar gate driver for control FET of buck converters. The most important advantage of the driver presented in this thesis is that it can turn off the power MOSFETs with a negative voltage, which will significantly reduce the turn off time and thus switching loss. In addition, the proposed bipolar gate driver has no inductor in the driver circuit; therefore it can be fully integrated into a chip. For buck converter with 5V input, 1.3V/25A load, in 2 MHz frequency, the proposed gate driver increases the efficiency from 75.8% to 77.8% and from 72.9% to 76.5% at 5V input, 1.3V/25A load, in 2.5 MHz switching frequency.

Computerworld

Computerworld PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 144

Get Book Here

Book Description
For more than 40 years, Computerworld has been the leading source of technology news and information for IT influencers worldwide. Computerworld's award-winning Web site (Computerworld.com), twice-monthly publication, focused conference series and custom research form the hub of the world's largest global IT media network.

DC Power Supplies

DC Power Supplies PDF Author: Nihal Kularatna
Publisher: CRC Press
ISBN: 1351838261
Category : Technology & Engineering
Languages : en
Pages : 466

Get Book Here

Book Description
As we increasingly use electronic devices to direct our daily lives, so grows our dependence on reliable energy sources to power them. Because modern electronic systems demand steady, efficient, reliable DC voltage sources—often at a sub-1V level—commercial AC lines, batteries, and other common resources no longer suffice. New technologies also require intricate techniques to protect against natural and manmade disasters. Still, despite its importance, practical information on this critical subject remains hard to find. Using simple, accessible language to balance coverage of theoretical and practical aspects, DC Power Supplies, Power Management and Surge Protection details the essentials of power electronics circuits applicable to low-power systems, including modern portable devices. A summary of underlying principles and essential design points, it compares academic research and industry publications and reviews DC power supply fundamentals, including linear and low-dropout regulators. Content also addresses common switching regulator topologies, exploring resonant conversion approaches. Coverage includes other important topics such as: Control aspects and control theory Digital control and control ICs used in switching regulators Power management and energy efficiency Overall power conversion stage and basic protection strategies for higher reliability Battery management and comparison of battery chemistries and charge/discharge management Surge and transient protection of circuits designed with modern semiconductors based on submicron dimension transistors This specialized design resource explores applicable fundamental elements of power sources, with numerous cited references and discussion of commercial components and manufacturers. Regardless of their previous experience level, this information will greatly aid designers, researchers, and academics who, study, design, and produce the viable new power sources needed to propel our modern electronic world. CRC Press Authors Speak Nihal Kularatna introduces his book. Watch the video