Data Visualization

Data Visualization PDF Author: Kieran Healy
Publisher: Princeton University Press
ISBN: 0691181624
Category : Social Science
Languages : en
Pages : 292

Get Book Here

Book Description
An accessible primer on how to create effective graphics from data This book provides students and researchers a hands-on introduction to the principles and practice of data visualization. It explains what makes some graphs succeed while others fail, how to make high-quality figures from data using powerful and reproducible methods, and how to think about data visualization in an honest and effective way. Data Visualization builds the reader’s expertise in ggplot2, a versatile visualization library for the R programming language. Through a series of worked examples, this accessible primer then demonstrates how to create plots piece by piece, beginning with summaries of single variables and moving on to more complex graphics. Topics include plotting continuous and categorical variables; layering information on graphics; producing effective “small multiple” plots; grouping, summarizing, and transforming data for plotting; creating maps; working with the output of statistical models; and refining plots to make them more comprehensible. Effective graphics are essential to communicating ideas and a great way to better understand data. This book provides the practical skills students and practitioners need to visualize quantitative data and get the most out of their research findings. Provides hands-on instruction using R and ggplot2 Shows how the “tidyverse” of data analysis tools makes working with R easier and more consistent Includes a library of data sets, code, and functions

Data Visualization

Data Visualization PDF Author: Kieran Healy
Publisher: Princeton University Press
ISBN: 0691181624
Category : Social Science
Languages : en
Pages : 292

Get Book Here

Book Description
An accessible primer on how to create effective graphics from data This book provides students and researchers a hands-on introduction to the principles and practice of data visualization. It explains what makes some graphs succeed while others fail, how to make high-quality figures from data using powerful and reproducible methods, and how to think about data visualization in an honest and effective way. Data Visualization builds the reader’s expertise in ggplot2, a versatile visualization library for the R programming language. Through a series of worked examples, this accessible primer then demonstrates how to create plots piece by piece, beginning with summaries of single variables and moving on to more complex graphics. Topics include plotting continuous and categorical variables; layering information on graphics; producing effective “small multiple” plots; grouping, summarizing, and transforming data for plotting; creating maps; working with the output of statistical models; and refining plots to make them more comprehensible. Effective graphics are essential to communicating ideas and a great way to better understand data. This book provides the practical skills students and practitioners need to visualize quantitative data and get the most out of their research findings. Provides hands-on instruction using R and ggplot2 Shows how the “tidyverse” of data analysis tools makes working with R easier and more consistent Includes a library of data sets, code, and functions

Statistical Graphics for Visualizing Multivariate Data

Statistical Graphics for Visualizing Multivariate Data PDF Author: William G. Jacoby
Publisher: SAGE
ISBN: 9780761908999
Category : Mathematics
Languages : en
Pages : 116

Get Book Here

Book Description
Jacoby explores a variety of graphical displays that are useful for visualising multivariate data, and introduces the concept of a 'data space'. Several methods for coding information directly into the plotting symbols are explained.

Linear Models in Statistics

Linear Models in Statistics PDF Author: Alvin C. Rencher
Publisher: John Wiley & Sons
ISBN: 0470192607
Category : Mathematics
Languages : en
Pages : 690

Get Book Here

Book Description
The essential introduction to the theory and application of linear models—now in a valuable new edition Since most advanced statistical tools are generalizations of the linear model, it is neces-sary to first master the linear model in order to move forward to more advanced concepts. The linear model remains the main tool of the applied statistician and is central to the training of any statistician regardless of whether the focus is applied or theoretical. This completely revised and updated new edition successfully develops the basic theory of linear models for regression, analysis of variance, analysis of covariance, and linear mixed models. Recent advances in the methodology related to linear mixed models, generalized linear models, and the Bayesian linear model are also addressed. Linear Models in Statistics, Second Edition includes full coverage of advanced topics, such as mixed and generalized linear models, Bayesian linear models, two-way models with empty cells, geometry of least squares, vector-matrix calculus, simultaneous inference, and logistic and nonlinear regression. Algebraic, geometrical, frequentist, and Bayesian approaches to both the inference of linear models and the analysis of variance are also illustrated. Through the expansion of relevant material and the inclusion of the latest technological developments in the field, this book provides readers with the theoretical foundation to correctly interpret computer software output as well as effectively use, customize, and understand linear models. This modern Second Edition features: New chapters on Bayesian linear models as well as random and mixed linear models Expanded discussion of two-way models with empty cells Additional sections on the geometry of least squares Updated coverage of simultaneous inference The book is complemented with easy-to-read proofs, real data sets, and an extensive bibliography. A thorough review of the requisite matrix algebra has been addedfor transitional purposes, and numerous theoretical and applied problems have been incorporated with selected answers provided at the end of the book. A related Web site includes additional data sets and SAS® code for all numerical examples. Linear Model in Statistics, Second Edition is a must-have book for courses in statistics, biostatistics, and mathematics at the upper-undergraduate and graduate levels. It is also an invaluable reference for researchers who need to gain a better understanding of regression and analysis of variance.

Visualizing Linear Models

Visualizing Linear Models PDF Author: W. D. Brinda
Publisher: Springer Nature
ISBN: 3030641678
Category : Mathematics
Languages : en
Pages : 167

Get Book Here

Book Description
This book provides a visual and intuitive coverage of the core theory of linear models. Designed to develop fluency with the underlying mathematics and to build a deep understanding of the principles, it's an excellent basis for a one-semester course on statistical theory and linear modeling for intermediate undergraduates or graduate students. Three chapters gradually develop the essentials of linear model theory. They are each preceded by a review chapter that covers a foundational prerequisite topic. This classroom-tested work explores two distinct and complementary types of visualization: the “observations picture” and the “variables picture.” To improve retention of material, this book is supplemented by a bank of ready-made practice exercises for students. These are available for digital or print use.

Discrete Data Analysis with R

Discrete Data Analysis with R PDF Author: Michael Friendly
Publisher: CRC Press
ISBN: 1498725864
Category : Mathematics
Languages : en
Pages : 700

Get Book Here

Book Description
An Applied Treatment of Modern Graphical Methods for Analyzing Categorical DataDiscrete Data Analysis with R: Visualization and Modeling Techniques for Categorical and Count Data presents an applied treatment of modern methods for the analysis of categorical data, both discrete response data and frequency data. It explains how to use graphical meth

A Course on Queueing Models

A Course on Queueing Models PDF Author: Joti Lal Jain
Publisher: CRC Press
ISBN: 1420011464
Category : Business & Economics
Languages : en
Pages : 472

Get Book Here

Book Description
The application of engineering principles in divergent fields such as management science and communications as well as the advancement of several approaches in theory and computation have led to growing interest in queueing models, creating the need for a comprehensive text. Emphasizing Markovian structures and the techniques that occur in differen

Randomization Tests, Fourth Edition

Randomization Tests, Fourth Edition PDF Author: Eugene Edgington
Publisher: CRC Press
ISBN: 1584885890
Category : Mathematics
Languages : en
Pages : 372

Get Book Here

Book Description
The number of innovative applications of randomization tests in various fields and recent developments in experimental design, significance testing, computing facilities, and randomization test algorithms have necessitated a new edition of Randomization Tests. Updated, reorganized, and revised, the text emphasizes the irrelevance and implausibility of the random sampling assumption for the typical experiment in three completely rewritten chapters. It also discusses factorial designs and interactions and combines repeated-measures and randomized block designs in one chapter. The authors focus more attention on the practicality of N-of-1 randomization tests and the availability of user-friendly software to perform them. In addition, they provide an overview of free and commercial computer programs for all of the tests presented in the book. Building on the previous editions that have served as standard textbooks for more than twenty-five years, Randomization Tests, Fourth Edition includes a CD-ROM of up-to-date randomization test programs that facilitate application of the tests to experimental data. This CD-ROM enables students to work out problems that have been added to the chapters and helps professors teach the basics of randomization tests and devise tasks for assignments and examinations.

A Kalman Filter Primer

A Kalman Filter Primer PDF Author: Randall L. Eubank
Publisher: CRC Press
ISBN: 9780824723651
Category : Mathematics
Languages : en
Pages : 208

Get Book Here

Book Description
System state estimation in the presence of noise is critical for control systems, signal processing, and many other applications in a variety of fields. Developed decades ago, the Kalman filter remains an important, powerful tool for estimating the variables in a system in the presence of noise. However, when inundated with theory and vast notations, learning just how the Kalman filter works can be a daunting task. With its mathematically rigorous, “no frills” approach to the basic discrete-time Kalman filter, A Kalman Filter Primer builds a thorough understanding of the inner workings and basic concepts of Kalman filter recursions from first principles. Instead of the typical Bayesian perspective, the author develops the topic via least-squares and classical matrix methods using the Cholesky decomposition to distill the essence of the Kalman filter and reveal the motivations behind the choice of the initializing state vector. He supplies pseudo-code algorithms for the various recursions, enabling code development to implement the filter in practice. The book thoroughly studies the development of modern smoothing algorithms and methods for determining initial states, along with a comprehensive development of the “diffuse” Kalman filter. Using a tiered presentation that builds on simple discussions to more complex and thorough treatments, A Kalman Filter Primer is the perfect introduction to quickly and effectively using the Kalman filter in practice.

Modern Data Science with R

Modern Data Science with R PDF Author: Benjamin S. Baumer
Publisher: CRC Press
ISBN: 0429575394
Category : Business & Economics
Languages : en
Pages : 830

Get Book Here

Book Description
From a review of the first edition: "Modern Data Science with R... is rich with examples and is guided by a strong narrative voice. What’s more, it presents an organizing framework that makes a convincing argument that data science is a course distinct from applied statistics" (The American Statistician). Modern Data Science with R is a comprehensive data science textbook for undergraduates that incorporates statistical and computational thinking to solve real-world data problems. Rather than focus exclusively on case studies or programming syntax, this book illustrates how statistical programming in the state-of-the-art R/RStudio computing environment can be leveraged to extract meaningful information from a variety of data in the service of addressing compelling questions. The second edition is updated to reflect the growing influence of the tidyverse set of packages. All code in the book has been revised and styled to be more readable and easier to understand. New functionality from packages like sf, purrr, tidymodels, and tidytext is now integrated into the text. All chapters have been revised, and several have been split, re-organized, or re-imagined to meet the shifting landscape of best practice.

R for Data Science

R for Data Science PDF Author: Hadley Wickham
Publisher: "O'Reilly Media, Inc."
ISBN: 1491910364
Category : Computers
Languages : en
Pages : 521

Get Book Here

Book Description
Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results