Author: Qi Wu
Publisher: Springer Nature
ISBN: 9811909644
Category : Computers
Languages : en
Pages : 238
Book Description
Visual Question Answering (VQA) usually combines visual inputs like image and video with a natural language question concerning the input and generates a natural language answer as the output. This is by nature a multi-disciplinary research problem, involving computer vision (CV), natural language processing (NLP), knowledge representation and reasoning (KR), etc. Further, VQA is an ambitious undertaking, as it must overcome the challenges of general image understanding and the question-answering task, as well as the difficulties entailed by using large-scale databases with mixed-quality inputs. However, with the advent of deep learning (DL) and driven by the existence of advanced techniques in both CV and NLP and the availability of relevant large-scale datasets, we have recently seen enormous strides in VQA, with more systems and promising results emerging. This book provides a comprehensive overview of VQA, covering fundamental theories, models, datasets, and promising future directions. Given its scope, it can be used as a textbook on computer vision and natural language processing, especially for researchers and students in the area of visual question answering. It also highlights the key models used in VQA.
Visual Question Answering
Author: Qi Wu
Publisher: Springer Nature
ISBN: 9811909644
Category : Computers
Languages : en
Pages : 238
Book Description
Visual Question Answering (VQA) usually combines visual inputs like image and video with a natural language question concerning the input and generates a natural language answer as the output. This is by nature a multi-disciplinary research problem, involving computer vision (CV), natural language processing (NLP), knowledge representation and reasoning (KR), etc. Further, VQA is an ambitious undertaking, as it must overcome the challenges of general image understanding and the question-answering task, as well as the difficulties entailed by using large-scale databases with mixed-quality inputs. However, with the advent of deep learning (DL) and driven by the existence of advanced techniques in both CV and NLP and the availability of relevant large-scale datasets, we have recently seen enormous strides in VQA, with more systems and promising results emerging. This book provides a comprehensive overview of VQA, covering fundamental theories, models, datasets, and promising future directions. Given its scope, it can be used as a textbook on computer vision and natural language processing, especially for researchers and students in the area of visual question answering. It also highlights the key models used in VQA.
Publisher: Springer Nature
ISBN: 9811909644
Category : Computers
Languages : en
Pages : 238
Book Description
Visual Question Answering (VQA) usually combines visual inputs like image and video with a natural language question concerning the input and generates a natural language answer as the output. This is by nature a multi-disciplinary research problem, involving computer vision (CV), natural language processing (NLP), knowledge representation and reasoning (KR), etc. Further, VQA is an ambitious undertaking, as it must overcome the challenges of general image understanding and the question-answering task, as well as the difficulties entailed by using large-scale databases with mixed-quality inputs. However, with the advent of deep learning (DL) and driven by the existence of advanced techniques in both CV and NLP and the availability of relevant large-scale datasets, we have recently seen enormous strides in VQA, with more systems and promising results emerging. This book provides a comprehensive overview of VQA, covering fundamental theories, models, datasets, and promising future directions. Given its scope, it can be used as a textbook on computer vision and natural language processing, especially for researchers and students in the area of visual question answering. It also highlights the key models used in VQA.
Conversational AI
Author: Michael McTear
Publisher: Springer Nature
ISBN: 3031021762
Category : Computers
Languages : en
Pages : 234
Book Description
This book provides a comprehensive introduction to Conversational AI. While the idea of interacting with a computer using voice or text goes back a long way, it is only in recent years that this idea has become a reality with the emergence of digital personal assistants, smart speakers, and chatbots. Advances in AI, particularly in deep learning, along with the availability of massive computing power and vast amounts of data, have led to a new generation of dialogue systems and conversational interfaces. Current research in Conversational AI focuses mainly on the application of machine learning and statistical data-driven approaches to the development of dialogue systems. However, it is important to be aware of previous achievements in dialogue technology and to consider to what extent they might be relevant to current research and development. Three main approaches to the development of dialogue systems are reviewed: rule-based systems that are handcrafted using best practice guidelines; statistical data-driven systems based on machine learning; and neural dialogue systems based on end-to-end learning. Evaluating the performance and usability of dialogue systems has become an important topic in its own right, and a variety of evaluation metrics and frameworks are described. Finally, a number of challenges for future research are considered, including: multimodality in dialogue systems, visual dialogue; data efficient dialogue model learning; using knowledge graphs; discourse and dialogue phenomena; hybrid approaches to dialogue systems development; dialogue with social robots and in the Internet of Things; and social and ethical issues.
Publisher: Springer Nature
ISBN: 3031021762
Category : Computers
Languages : en
Pages : 234
Book Description
This book provides a comprehensive introduction to Conversational AI. While the idea of interacting with a computer using voice or text goes back a long way, it is only in recent years that this idea has become a reality with the emergence of digital personal assistants, smart speakers, and chatbots. Advances in AI, particularly in deep learning, along with the availability of massive computing power and vast amounts of data, have led to a new generation of dialogue systems and conversational interfaces. Current research in Conversational AI focuses mainly on the application of machine learning and statistical data-driven approaches to the development of dialogue systems. However, it is important to be aware of previous achievements in dialogue technology and to consider to what extent they might be relevant to current research and development. Three main approaches to the development of dialogue systems are reviewed: rule-based systems that are handcrafted using best practice guidelines; statistical data-driven systems based on machine learning; and neural dialogue systems based on end-to-end learning. Evaluating the performance and usability of dialogue systems has become an important topic in its own right, and a variety of evaluation metrics and frameworks are described. Finally, a number of challenges for future research are considered, including: multimodality in dialogue systems, visual dialogue; data efficient dialogue model learning; using knowledge graphs; discourse and dialogue phenomena; hybrid approaches to dialogue systems development; dialogue with social robots and in the Internet of Things; and social and ethical issues.
Pattern Recognition and Computer Vision
Author: Qingshan Liu
Publisher: Springer Nature
ISBN: 9819984297
Category : Computers
Languages : en
Pages : 525
Book Description
The 13-volume set LNCS 14425-14437 constitutes the refereed proceedings of the 6th Chinese Conference on Pattern Recognition and Computer Vision, PRCV 2023, held in Xiamen, China, during October 13–15, 2023. The 532 full papers presented in these volumes were selected from 1420 submissions. The papers have been organized in the following topical sections: Action Recognition, Multi-Modal Information Processing, 3D Vision and Reconstruction, Character Recognition, Fundamental Theory of Computer Vision, Machine Learning, Vision Problems in Robotics, Autonomous Driving, Pattern Classification and Cluster Analysis, Performance Evaluation and Benchmarks, Remote Sensing Image Interpretation, Biometric Recognition, Face Recognition and Pose Recognition, Structural Pattern Recognition, Computational Photography, Sensing and Display Technology, Video Analysis and Understanding, Vision Applications and Systems, Document Analysis and Recognition, Feature Extraction and Feature Selection, Multimedia Analysis and Reasoning, Optimization and Learning methods, Neural Network and Deep Learning, Low-Level Vision and Image Processing, Object Detection, Tracking and Identification, Medical Image Processing and Analysis.
Publisher: Springer Nature
ISBN: 9819984297
Category : Computers
Languages : en
Pages : 525
Book Description
The 13-volume set LNCS 14425-14437 constitutes the refereed proceedings of the 6th Chinese Conference on Pattern Recognition and Computer Vision, PRCV 2023, held in Xiamen, China, during October 13–15, 2023. The 532 full papers presented in these volumes were selected from 1420 submissions. The papers have been organized in the following topical sections: Action Recognition, Multi-Modal Information Processing, 3D Vision and Reconstruction, Character Recognition, Fundamental Theory of Computer Vision, Machine Learning, Vision Problems in Robotics, Autonomous Driving, Pattern Classification and Cluster Analysis, Performance Evaluation and Benchmarks, Remote Sensing Image Interpretation, Biometric Recognition, Face Recognition and Pose Recognition, Structural Pattern Recognition, Computational Photography, Sensing and Display Technology, Video Analysis and Understanding, Vision Applications and Systems, Document Analysis and Recognition, Feature Extraction and Feature Selection, Multimedia Analysis and Reasoning, Optimization and Learning methods, Neural Network and Deep Learning, Low-Level Vision and Image Processing, Object Detection, Tracking and Identification, Medical Image Processing and Analysis.
The Visual Imperative
Author: Lindy Ryan
Publisher: Morgan Kaufmann
ISBN: 0128039302
Category : Computers
Languages : en
Pages : 322
Book Description
Data is powerful. It separates leaders from laggards and it drives business disruption, transformation, and reinvention. Today's most progressive companies are using the power of data to propel their industries into new areas of innovation, specialization, and optimization. The horsepower of new tools and technologies have provided more opportunities than ever to harness, integrate, and interact with massive amounts of disparate data for business insights and value – something that will only continue in the era of the Internet of Things. And, as a new breed of tech-savvy and digitally native knowledge workers rise to the ranks of data scientist and visual analyst, the needs and demands of the people working with data are changing, too. The world of data is changing fast. And, it's becoming more visual. Visual insights are becoming increasingly dominant in information management, and with the reinvigorated role of data visualization, this imperative is a driving force to creating a visual culture of data discovery. The traditional standards of data visualizations are making way for richer, more robust and more advanced visualizations and new ways of seeing and interacting with data. However, while data visualization is a critical tool to exploring and understanding bigger and more diverse and dynamic data, by understanding and embracing our human hardwiring for visual communication and storytelling and properly incorporating key design principles and evolving best practices, we take the next step forward to transform data visualizations from tools into unique visual information assets. - Discusses several years of in-depth industry research and presents vendor tools, approaches, and methodologies in discovery, visualization, and visual analytics - Provides practicable and use case-based experience from advisory work with Fortune 100 and 500 companies across multiple verticals - Presents the next-generation of visual discovery, data storytelling, and the Five Steps to Data Storytelling with Visualization - Explains the Convergence of Visual Analytics and Visual discovery, including how to use tools such as R in statistical and analytic modeling - Covers emerging technologies such as streaming visualization in the IOT (Internet of Things) and streaming animation
Publisher: Morgan Kaufmann
ISBN: 0128039302
Category : Computers
Languages : en
Pages : 322
Book Description
Data is powerful. It separates leaders from laggards and it drives business disruption, transformation, and reinvention. Today's most progressive companies are using the power of data to propel their industries into new areas of innovation, specialization, and optimization. The horsepower of new tools and technologies have provided more opportunities than ever to harness, integrate, and interact with massive amounts of disparate data for business insights and value – something that will only continue in the era of the Internet of Things. And, as a new breed of tech-savvy and digitally native knowledge workers rise to the ranks of data scientist and visual analyst, the needs and demands of the people working with data are changing, too. The world of data is changing fast. And, it's becoming more visual. Visual insights are becoming increasingly dominant in information management, and with the reinvigorated role of data visualization, this imperative is a driving force to creating a visual culture of data discovery. The traditional standards of data visualizations are making way for richer, more robust and more advanced visualizations and new ways of seeing and interacting with data. However, while data visualization is a critical tool to exploring and understanding bigger and more diverse and dynamic data, by understanding and embracing our human hardwiring for visual communication and storytelling and properly incorporating key design principles and evolving best practices, we take the next step forward to transform data visualizations from tools into unique visual information assets. - Discusses several years of in-depth industry research and presents vendor tools, approaches, and methodologies in discovery, visualization, and visual analytics - Provides practicable and use case-based experience from advisory work with Fortune 100 and 500 companies across multiple verticals - Presents the next-generation of visual discovery, data storytelling, and the Five Steps to Data Storytelling with Visualization - Explains the Convergence of Visual Analytics and Visual discovery, including how to use tools such as R in statistical and analytic modeling - Covers emerging technologies such as streaming visualization in the IOT (Internet of Things) and streaming animation
Text, Speech, and Dialogue
Author: Kamil Ekštein
Publisher: Springer
ISBN: 3319642065
Category : Computers
Languages : en
Pages : 536
Book Description
This book constitutes the proceedings of the 20th International Conference on Text, Speech, and Dialogue, TSD 2017, held in Prague, CzechRepublic, in August 2017. The 56 regular papers presented together with 3 abstracts of keynote talks were carefully reviewed and selected from 117 submissions. They focus on topics such as corpora and language resources; speech recognition; tagging, classification and parsing of text and speech; speech and spoken language generation; semantic processing of text and speech; integrating applications of text and speech processing; automatic dialogue systems; as well as multimodal techniques and modelling.
Publisher: Springer
ISBN: 3319642065
Category : Computers
Languages : en
Pages : 536
Book Description
This book constitutes the proceedings of the 20th International Conference on Text, Speech, and Dialogue, TSD 2017, held in Prague, CzechRepublic, in August 2017. The 56 regular papers presented together with 3 abstracts of keynote talks were carefully reviewed and selected from 117 submissions. They focus on topics such as corpora and language resources; speech recognition; tagging, classification and parsing of text and speech; speech and spoken language generation; semantic processing of text and speech; integrating applications of text and speech processing; automatic dialogue systems; as well as multimodal techniques and modelling.
Computer Vision – ECCV 2018
Author: Vittorio Ferrari
Publisher: Springer
ISBN: 3030012670
Category : Computers
Languages : en
Pages : 917
Book Description
The sixteen-volume set comprising the LNCS volumes 11205-11220 constitutes the refereed proceedings of the 15th European Conference on Computer Vision, ECCV 2018, held in Munich, Germany, in September 2018.The 776 revised papers presented were carefully reviewed and selected from 2439 submissions. The papers are organized in topical sections on learning for vision; computational photography; human analysis; human sensing; stereo and reconstruction; optimization; matching and recognition; video attention; and poster sessions.
Publisher: Springer
ISBN: 3030012670
Category : Computers
Languages : en
Pages : 917
Book Description
The sixteen-volume set comprising the LNCS volumes 11205-11220 constitutes the refereed proceedings of the 15th European Conference on Computer Vision, ECCV 2018, held in Munich, Germany, in September 2018.The 776 revised papers presented were carefully reviewed and selected from 2439 submissions. The papers are organized in topical sections on learning for vision; computational photography; human analysis; human sensing; stereo and reconstruction; optimization; matching and recognition; video attention; and poster sessions.
Computer Vision – ECCV 2020
Author: Andrea Vedaldi
Publisher: Springer Nature
ISBN: 3030585239
Category : Computers
Languages : en
Pages : 847
Book Description
The 30-volume set, comprising the LNCS books 12346 until 12375, constitutes the refereed proceedings of the 16th European Conference on Computer Vision, ECCV 2020, which was planned to be held in Glasgow, UK, during August 23-28, 2020. The conference was held virtually due to the COVID-19 pandemic. The 1360 revised papers presented in these proceedings were carefully reviewed and selected from a total of 5025 submissions. The papers deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; object recognition; motion estimation.
Publisher: Springer Nature
ISBN: 3030585239
Category : Computers
Languages : en
Pages : 847
Book Description
The 30-volume set, comprising the LNCS books 12346 until 12375, constitutes the refereed proceedings of the 16th European Conference on Computer Vision, ECCV 2020, which was planned to be held in Glasgow, UK, during August 23-28, 2020. The conference was held virtually due to the COVID-19 pandemic. The 1360 revised papers presented in these proceedings were carefully reviewed and selected from a total of 5025 submissions. The papers deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; object recognition; motion estimation.
Computational Visual Media
Author: Fang-Lue Zhang
Publisher: Springer Nature
ISBN: 9819720923
Category :
Languages : en
Pages : 384
Book Description
Publisher: Springer Nature
ISBN: 9819720923
Category :
Languages : en
Pages : 384
Book Description
Artificial Neural Networks and Machine Learning – ICANN 2022
Author: Elias Pimenidis
Publisher: Springer Nature
ISBN: 3031159314
Category : Computers
Languages : en
Pages : 836
Book Description
The 4-volumes set of LNCS 13529, 13530, 13531, and 13532 constitutes the proceedings of the 31st International Conference on Artificial Neural Networks, ICANN 2022, held in Bristol, UK, in September 2022. The total of 255 full papers presented in these proceedings was carefully reviewed and selected from 561 submissions. ICANN 2022 is a dual-track conference featuring tracks in brain inspired computing and machine learning and artificial neural networks, with strong cross-disciplinary interactions and applications. Chapters “Learning Flexible Translation Between Robot Actions and Language Descriptions”, “Learning Visually Grounded Human-Robot Dialog in a Hybrid Neural Architecture” are available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
Publisher: Springer Nature
ISBN: 3031159314
Category : Computers
Languages : en
Pages : 836
Book Description
The 4-volumes set of LNCS 13529, 13530, 13531, and 13532 constitutes the proceedings of the 31st International Conference on Artificial Neural Networks, ICANN 2022, held in Bristol, UK, in September 2022. The total of 255 full papers presented in these proceedings was carefully reviewed and selected from 561 submissions. ICANN 2022 is a dual-track conference featuring tracks in brain inspired computing and machine learning and artificial neural networks, with strong cross-disciplinary interactions and applications. Chapters “Learning Flexible Translation Between Robot Actions and Language Descriptions”, “Learning Visually Grounded Human-Robot Dialog in a Hybrid Neural Architecture” are available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
Computational Knowledge Vision
Author: Wenbo Zheng
Publisher: Elsevier
ISBN: 0443216185
Category : Computers
Languages : en
Pages : 278
Book Description
Computational Knowledge Vision: The First Footprints presents a novel, advanced framework which combines structuralized knowledge and visual models. In advanced image and visual perception studies, a visual model's understanding and reasoning ability often determines whether it works well in complex scenarios. This book presents state-of-the-art mainstream vision models for visual perception. As computer vision is one of the key gateways to artificial intelligence and a significant component of modern intelligent systems, this book delves into computer vision systems that are highly specialized and very limited in their ability to do visual reasoning and causal inference. Questions naturally arise in this arena, including (1) How can human knowledge be incorporated with visual models? (2) How does human knowledge promote the performance of visual models? To address these problems, this book proposes a new framework for computer vision–computational knowledge vision. - Presents a concept and basic framework of Computational Knowledge Vision that extends the knowledge engineering methodology to the computer vision field - Discusses neural networks, meta-learning, graphs, and Transformer models - Illustrates a basic framework for Computational Knowledge Vision whose essential techniques include structuralized knowledge, knowledge projection, and conditional feedback
Publisher: Elsevier
ISBN: 0443216185
Category : Computers
Languages : en
Pages : 278
Book Description
Computational Knowledge Vision: The First Footprints presents a novel, advanced framework which combines structuralized knowledge and visual models. In advanced image and visual perception studies, a visual model's understanding and reasoning ability often determines whether it works well in complex scenarios. This book presents state-of-the-art mainstream vision models for visual perception. As computer vision is one of the key gateways to artificial intelligence and a significant component of modern intelligent systems, this book delves into computer vision systems that are highly specialized and very limited in their ability to do visual reasoning and causal inference. Questions naturally arise in this arena, including (1) How can human knowledge be incorporated with visual models? (2) How does human knowledge promote the performance of visual models? To address these problems, this book proposes a new framework for computer vision–computational knowledge vision. - Presents a concept and basic framework of Computational Knowledge Vision that extends the knowledge engineering methodology to the computer vision field - Discusses neural networks, meta-learning, graphs, and Transformer models - Illustrates a basic framework for Computational Knowledge Vision whose essential techniques include structuralized knowledge, knowledge projection, and conditional feedback