Author: Tom Soukup
Publisher: John Wiley & Sons
ISBN: 0471271381
Category : Computers
Languages : en
Pages : 425
Book Description
Marketing analysts use data mining techniques to gain a reliable understanding of customer buying habits and then use that information to develop new marketing campaigns and products. Visual mining tools introduce a world of possibilities to a much broader and non-technical audience to help them solve common business problems. Explains how to select the appropriate data sets for analysis, transform the data sets into usable formats, and verify that the sets are error-free Reviews how to choose the right model for the specific type of analysis project, how to analyze the model, and present the results for decision making Shows how to solve numerous business problems by applying various tools and techniques Companion Web site offers links to data visualization and visual data mining tools, and real-world success stories using visual data mining
Visual Data Mining
Author: Tom Soukup
Publisher: John Wiley & Sons
ISBN: 0471271381
Category : Computers
Languages : en
Pages : 425
Book Description
Marketing analysts use data mining techniques to gain a reliable understanding of customer buying habits and then use that information to develop new marketing campaigns and products. Visual mining tools introduce a world of possibilities to a much broader and non-technical audience to help them solve common business problems. Explains how to select the appropriate data sets for analysis, transform the data sets into usable formats, and verify that the sets are error-free Reviews how to choose the right model for the specific type of analysis project, how to analyze the model, and present the results for decision making Shows how to solve numerous business problems by applying various tools and techniques Companion Web site offers links to data visualization and visual data mining tools, and real-world success stories using visual data mining
Publisher: John Wiley & Sons
ISBN: 0471271381
Category : Computers
Languages : en
Pages : 425
Book Description
Marketing analysts use data mining techniques to gain a reliable understanding of customer buying habits and then use that information to develop new marketing campaigns and products. Visual mining tools introduce a world of possibilities to a much broader and non-technical audience to help them solve common business problems. Explains how to select the appropriate data sets for analysis, transform the data sets into usable formats, and verify that the sets are error-free Reviews how to choose the right model for the specific type of analysis project, how to analyze the model, and present the results for decision making Shows how to solve numerous business problems by applying various tools and techniques Companion Web site offers links to data visualization and visual data mining tools, and real-world success stories using visual data mining
Visual Data Mining
Author: Simeon Simoff
Publisher: Springer
ISBN: 3540710809
Category : Computers
Languages : en
Pages : 417
Book Description
Visual Data Mining—Opening the Black Box Knowledge discovery holds the promise of insight into large, otherwise opaque datasets. Thenatureofwhatmakesaruleinterestingtoauserhasbeendiscussed 1 widely but most agree that it is a subjective quality based on the practical u- fulness of the information. Being subjective, the user needs to provide feedback to the system and, as is the case for all systems, the sooner the feedback is given the quicker it can in?uence the behavior of the system. There have been some impressive research activities over the past few years but the question to be asked is why is visual data mining only now being - vestigated commercially? Certainly, there have been arguments for visual data 2 mining for a number of years – Ankerst and others argued in 2002 that current (autonomous and opaque) analysis techniques are ine?cient, as they fail to - rectly embed the user in dataset exploration and that a better solution involves the user and algorithm being more tightly coupled. Grinstein stated that the “current state of the art data mining tools are automated, but the perfect data mining tool is interactive and highly participatory,” while Han has suggested that the “data selection and viewing of mining results should be fully inter- tive, the mining process should be more interactive than the current state of the 2 art and embedded applications should be fairly automated . ” A good survey on 3 techniques until 2003 was published by de Oliveira and Levkowitz .
Publisher: Springer
ISBN: 3540710809
Category : Computers
Languages : en
Pages : 417
Book Description
Visual Data Mining—Opening the Black Box Knowledge discovery holds the promise of insight into large, otherwise opaque datasets. Thenatureofwhatmakesaruleinterestingtoauserhasbeendiscussed 1 widely but most agree that it is a subjective quality based on the practical u- fulness of the information. Being subjective, the user needs to provide feedback to the system and, as is the case for all systems, the sooner the feedback is given the quicker it can in?uence the behavior of the system. There have been some impressive research activities over the past few years but the question to be asked is why is visual data mining only now being - vestigated commercially? Certainly, there have been arguments for visual data 2 mining for a number of years – Ankerst and others argued in 2002 that current (autonomous and opaque) analysis techniques are ine?cient, as they fail to - rectly embed the user in dataset exploration and that a better solution involves the user and algorithm being more tightly coupled. Grinstein stated that the “current state of the art data mining tools are automated, but the perfect data mining tool is interactive and highly participatory,” while Han has suggested that the “data selection and viewing of mining results should be fully inter- tive, the mining process should be more interactive than the current state of the 2 art and embedded applications should be fairly automated . ” A good survey on 3 techniques until 2003 was published by de Oliveira and Levkowitz .
Visual and Spatial Analysis
Author: Boris Kovalerchuk
Publisher: Springer Science & Business Media
ISBN: 1402029586
Category : Computers
Languages : en
Pages : 582
Book Description
Advanced visual analysis and problem solving has been conducted successfully for millennia. The Pythagorean Theorem was proven using visual means more than 2000 years ago. In the 19th century, John Snow stopped a cholera epidemic in London by proposing that a specific water pump be shut down. He discovered that pump by visually correlating data on a city map. The goal of this book is to present the current trends in visual and spatial analysis for data mining, reasoning, problem solving and decision-making. This is the first book to focus on visual decision making and problem solving in general with specific applications in the geospatial domain - combining theory with real-world practice. The book is unique in its integration of modern symbolic and visual approaches to decision making and problem solving. As such, it ties together much of the monograph and textbook literature in these emerging areas. This book contains 21 chapters that have been grouped into five parts: (1) visual problem solving and decision making, (2) visual and heterogeneous reasoning, (3) visual correlation, (4) visual and spatial data mining, and (5) visual and spatial problem solving in geospatial domains. Each chapter ends with a summary and exercises. The book is intended for professionals and graduate students in computer science, applied mathematics, imaging science and Geospatial Information Systems (GIS). In addition to being a state-of-the-art research compilation, this book can be used a text for advanced courses on the subjects such as modeling, computer graphics, visualization, image processing, data mining, GIS, and algorithm analysis.
Publisher: Springer Science & Business Media
ISBN: 1402029586
Category : Computers
Languages : en
Pages : 582
Book Description
Advanced visual analysis and problem solving has been conducted successfully for millennia. The Pythagorean Theorem was proven using visual means more than 2000 years ago. In the 19th century, John Snow stopped a cholera epidemic in London by proposing that a specific water pump be shut down. He discovered that pump by visually correlating data on a city map. The goal of this book is to present the current trends in visual and spatial analysis for data mining, reasoning, problem solving and decision-making. This is the first book to focus on visual decision making and problem solving in general with specific applications in the geospatial domain - combining theory with real-world practice. The book is unique in its integration of modern symbolic and visual approaches to decision making and problem solving. As such, it ties together much of the monograph and textbook literature in these emerging areas. This book contains 21 chapters that have been grouped into five parts: (1) visual problem solving and decision making, (2) visual and heterogeneous reasoning, (3) visual correlation, (4) visual and spatial data mining, and (5) visual and spatial problem solving in geospatial domains. Each chapter ends with a summary and exercises. The book is intended for professionals and graduate students in computer science, applied mathematics, imaging science and Geospatial Information Systems (GIS). In addition to being a state-of-the-art research compilation, this book can be used a text for advanced courses on the subjects such as modeling, computer graphics, visualization, image processing, data mining, GIS, and algorithm analysis.
Innovative Approaches of Data Visualization and Visual Analytics
Author: Huang, Mao Lin
Publisher: IGI Global
ISBN: 1466643102
Category : Computers
Languages : en
Pages : 464
Book Description
Due to rapid advances in hardware and software technologies, network infrastructure and data have become increasingly complex, requiring efforts to more effectively comprehend and analyze network topologies and information systems. Innovative Approaches of Data Visualization and Visual Analytics evaluates the latest trends and developments in force-based data visualization techniques, addressing issues in the design, development, evaluation, and application of algorithms and network topologies. This book will assist professionals and researchers working in the fields of data analysis and information science, as well as students in computer science and computer engineering, in developing increasingly effective methods of knowledge creation, management, and preservation.
Publisher: IGI Global
ISBN: 1466643102
Category : Computers
Languages : en
Pages : 464
Book Description
Due to rapid advances in hardware and software technologies, network infrastructure and data have become increasingly complex, requiring efforts to more effectively comprehend and analyze network topologies and information systems. Innovative Approaches of Data Visualization and Visual Analytics evaluates the latest trends and developments in force-based data visualization techniques, addressing issues in the design, development, evaluation, and application of algorithms and network topologies. This book will assist professionals and researchers working in the fields of data analysis and information science, as well as students in computer science and computer engineering, in developing increasingly effective methods of knowledge creation, management, and preservation.
Information Visualization in Data Mining and Knowledge Discovery
Author: Usama M. Fayyad
Publisher: Morgan Kaufmann
ISBN: 9781558606890
Category : Computers
Languages : en
Pages : 446
Book Description
This text surveys research from the fields of data mining and information visualisation and presents a case for techniques by which information visualisation can be used to uncover real knowledge hidden away in large databases.
Publisher: Morgan Kaufmann
ISBN: 9781558606890
Category : Computers
Languages : en
Pages : 446
Book Description
This text surveys research from the fields of data mining and information visualisation and presents a case for techniques by which information visualisation can be used to uncover real knowledge hidden away in large databases.
Data Mining and Machine Learning Applications
Author: Rohit Raja
Publisher: John Wiley & Sons
ISBN: 1119791782
Category : Computers
Languages : en
Pages : 500
Book Description
DATA MINING AND MACHINE LEARNING APPLICATIONS The book elaborates in detail on the current needs of data mining and machine learning and promotes mutual understanding among research in different disciplines, thus facilitating research development and collaboration. Data, the latest currency of today’s world, is the new gold. In this new form of gold, the most beautiful jewels are data analytics and machine learning. Data mining and machine learning are considered interdisciplinary fields. Data mining is a subset of data analytics and machine learning involves the use of algorithms that automatically improve through experience based on data. Massive datasets can be classified and clustered to obtain accurate results. The most common technologies used include classification and clustering methods. Accuracy and error rates are calculated for regression and classification and clustering to find actual results through algorithms like support vector machines and neural networks with forward and backward propagation. Applications include fraud detection, image processing, medical diagnosis, weather prediction, e-commerce and so forth. The book features: A review of the state-of-the-art in data mining and machine learning, A review and description of the learning methods in human-computer interaction, Implementation strategies and future research directions used to meet the design and application requirements of several modern and real-time applications for a long time, The scope and implementation of a majority of data mining and machine learning strategies. A discussion of real-time problems. Audience Industry and academic researchers, scientists, and engineers in information technology, data science and machine and deep learning, as well as artificial intelligence more broadly.
Publisher: John Wiley & Sons
ISBN: 1119791782
Category : Computers
Languages : en
Pages : 500
Book Description
DATA MINING AND MACHINE LEARNING APPLICATIONS The book elaborates in detail on the current needs of data mining and machine learning and promotes mutual understanding among research in different disciplines, thus facilitating research development and collaboration. Data, the latest currency of today’s world, is the new gold. In this new form of gold, the most beautiful jewels are data analytics and machine learning. Data mining and machine learning are considered interdisciplinary fields. Data mining is a subset of data analytics and machine learning involves the use of algorithms that automatically improve through experience based on data. Massive datasets can be classified and clustered to obtain accurate results. The most common technologies used include classification and clustering methods. Accuracy and error rates are calculated for regression and classification and clustering to find actual results through algorithms like support vector machines and neural networks with forward and backward propagation. Applications include fraud detection, image processing, medical diagnosis, weather prediction, e-commerce and so forth. The book features: A review of the state-of-the-art in data mining and machine learning, A review and description of the learning methods in human-computer interaction, Implementation strategies and future research directions used to meet the design and application requirements of several modern and real-time applications for a long time, The scope and implementation of a majority of data mining and machine learning strategies. A discussion of real-time problems. Audience Industry and academic researchers, scientists, and engineers in information technology, data science and machine and deep learning, as well as artificial intelligence more broadly.
Data Mining and Data Visualization
Author:
Publisher: Elsevier
ISBN: 0080459404
Category : Mathematics
Languages : en
Pages : 660
Book Description
Data Mining and Data Visualization focuses on dealing with large-scale data, a field commonly referred to as data mining. The book is divided into three sections. The first deals with an introduction to statistical aspects of data mining and machine learning and includes applications to text analysis, computer intrusion detection, and hiding of information in digital files. The second section focuses on a variety of statistical methodologies that have proven to be effective in data mining applications. These include clustering, classification, multivariate density estimation, tree-based methods, pattern recognition, outlier detection, genetic algorithms, and dimensionality reduction. The third section focuses on data visualization and covers issues of visualization of high-dimensional data, novel graphical techniques with a focus on human factors, interactive graphics, and data visualization using virtual reality. This book represents a thorough cross section of internationally renowned thinkers who are inventing methods for dealing with a new data paradigm. - Distinguished contributors who are international experts in aspects of data mining - Includes data mining approaches to non-numerical data mining including text data, Internet traffic data, and geographic data - Highly topical discussions reflecting current thinking on contemporary technical issues, e.g. streaming data - Discusses taxonomy of dataset sizes, computational complexity, and scalability usually ignored in most discussions - Thorough discussion of data visualization issues blending statistical, human factors, and computational insights
Publisher: Elsevier
ISBN: 0080459404
Category : Mathematics
Languages : en
Pages : 660
Book Description
Data Mining and Data Visualization focuses on dealing with large-scale data, a field commonly referred to as data mining. The book is divided into three sections. The first deals with an introduction to statistical aspects of data mining and machine learning and includes applications to text analysis, computer intrusion detection, and hiding of information in digital files. The second section focuses on a variety of statistical methodologies that have proven to be effective in data mining applications. These include clustering, classification, multivariate density estimation, tree-based methods, pattern recognition, outlier detection, genetic algorithms, and dimensionality reduction. The third section focuses on data visualization and covers issues of visualization of high-dimensional data, novel graphical techniques with a focus on human factors, interactive graphics, and data visualization using virtual reality. This book represents a thorough cross section of internationally renowned thinkers who are inventing methods for dealing with a new data paradigm. - Distinguished contributors who are international experts in aspects of data mining - Includes data mining approaches to non-numerical data mining including text data, Internet traffic data, and geographic data - Highly topical discussions reflecting current thinking on contemporary technical issues, e.g. streaming data - Discusses taxonomy of dataset sizes, computational complexity, and scalability usually ignored in most discussions - Thorough discussion of data visualization issues blending statistical, human factors, and computational insights
Data Mining Solutions
Author: Christopher Westphal
Publisher:
ISBN:
Category : Computers
Languages : en
Pages : 648
Book Description
Cutting-edge data mining techniques and tools for solving your toughest analytical problems Data Mining Solutions In down-to-earth language, data mining experts Christopher Westphal and Teresa Blaxton introduce a brand new approach to data mining analysis. Through their extensive real-world experience, they have developed and documented many practical and proven techniques to make your own data mining efforts more successful. You'll get a refreshing "out-of-the-box" approach to data mining that will help you maximize your time and problem-solving resources, and prepare for the next wave of data mining-visualization. You will read about ways in which data mining has been used to: * Discover patterns of insider trading in the stock market * Evaluate the utility of marketing campaigns * Analyze retail sales patterns across geographic regions * Identify money laundering operations * Target DNA sequences for pharmaceutical testing and development The book is accompanied by a CD-ROM that contains: * Demo and trial versions of numerous visual data mining tools * Active web-page links for each of the products profiled * GIF files corresponding to all book images
Publisher:
ISBN:
Category : Computers
Languages : en
Pages : 648
Book Description
Cutting-edge data mining techniques and tools for solving your toughest analytical problems Data Mining Solutions In down-to-earth language, data mining experts Christopher Westphal and Teresa Blaxton introduce a brand new approach to data mining analysis. Through their extensive real-world experience, they have developed and documented many practical and proven techniques to make your own data mining efforts more successful. You'll get a refreshing "out-of-the-box" approach to data mining that will help you maximize your time and problem-solving resources, and prepare for the next wave of data mining-visualization. You will read about ways in which data mining has been used to: * Discover patterns of insider trading in the stock market * Evaluate the utility of marketing campaigns * Analyze retail sales patterns across geographic regions * Identify money laundering operations * Target DNA sequences for pharmaceutical testing and development The book is accompanied by a CD-ROM that contains: * Demo and trial versions of numerous visual data mining tools * Active web-page links for each of the products profiled * GIF files corresponding to all book images
Learn Data Mining Through Excel
Author: Hong Zhou
Publisher: Apress
ISBN: 1484259823
Category : Computers
Languages : en
Pages : 223
Book Description
Use popular data mining techniques in Microsoft Excel to better understand machine learning methods. Software tools and programming language packages take data input and deliver data mining results directly, presenting no insight on working mechanics and creating a chasm between input and output. This is where Excel can help. Excel allows you to work with data in a transparent manner. When you open an Excel file, data is visible immediately and you can work with it directly. Intermediate results can be examined while you are conducting your mining task, offering a deeper understanding of how data is manipulated and results are obtained. These are critical aspects of the model construction process that are hidden in software tools and programming language packages. This book teaches you data mining through Excel. You will learn how Excel has an advantage in data mining when the data sets are not too large. It can give you a visual representation of data mining, building confidence in your results. You will go through every step manually, which offers not only an active learning experience, but teaches you how the mining process works and how to find the internal hidden patterns inside the data. What You Will Learn Comprehend data mining using a visual step-by-step approachBuild on a theoretical introduction of a data mining method, followed by an Excel implementationUnveil the mystery behind machine learning algorithms, making a complex topic accessible to everyoneBecome skilled in creative uses of Excel formulas and functionsObtain hands-on experience with data mining and Excel Who This Book Is For Anyone who is interested in learning data mining or machine learning, especially data science visual learners and people skilled in Excel, who would like to explore data science topics and/or expand their Excel skills. A basic or beginner level understanding of Excel is recommended.
Publisher: Apress
ISBN: 1484259823
Category : Computers
Languages : en
Pages : 223
Book Description
Use popular data mining techniques in Microsoft Excel to better understand machine learning methods. Software tools and programming language packages take data input and deliver data mining results directly, presenting no insight on working mechanics and creating a chasm between input and output. This is where Excel can help. Excel allows you to work with data in a transparent manner. When you open an Excel file, data is visible immediately and you can work with it directly. Intermediate results can be examined while you are conducting your mining task, offering a deeper understanding of how data is manipulated and results are obtained. These are critical aspects of the model construction process that are hidden in software tools and programming language packages. This book teaches you data mining through Excel. You will learn how Excel has an advantage in data mining when the data sets are not too large. It can give you a visual representation of data mining, building confidence in your results. You will go through every step manually, which offers not only an active learning experience, but teaches you how the mining process works and how to find the internal hidden patterns inside the data. What You Will Learn Comprehend data mining using a visual step-by-step approachBuild on a theoretical introduction of a data mining method, followed by an Excel implementationUnveil the mystery behind machine learning algorithms, making a complex topic accessible to everyoneBecome skilled in creative uses of Excel formulas and functionsObtain hands-on experience with data mining and Excel Who This Book Is For Anyone who is interested in learning data mining or machine learning, especially data science visual learners and people skilled in Excel, who would like to explore data science topics and/or expand their Excel skills. A basic or beginner level understanding of Excel is recommended.
Machine Learning with SAS Viya
Author: SAS Institute Inc.
Publisher: SAS Institute
ISBN: 1951685377
Category : Computers
Languages : en
Pages : 309
Book Description
Master machine learning with SAS Viya! Machine learning can feel intimidating for new practitioners. Machine Learning with SAS Viya provides everything you need to know to get started with machine learning in SAS Viya, including decision trees, neural networks, and support vector machines. The analytics life cycle is covered from data preparation and discovery to deployment. Working with open-source code? Machine Learning with SAS Viya has you covered – step-by-step instructions are given on how to use SAS Model Manager tools with open source. SAS Model Studio features are highlighted to show how to carry out machine learning in SAS Viya. Demonstrations, practice tasks, and quizzes are included to help sharpen your skills. In this book, you will learn about: Supervised and unsupervised machine learning Data preparation and dealing with missing and unstructured data Model building and selection Improving and optimizing models Model deployment and monitoring performance
Publisher: SAS Institute
ISBN: 1951685377
Category : Computers
Languages : en
Pages : 309
Book Description
Master machine learning with SAS Viya! Machine learning can feel intimidating for new practitioners. Machine Learning with SAS Viya provides everything you need to know to get started with machine learning in SAS Viya, including decision trees, neural networks, and support vector machines. The analytics life cycle is covered from data preparation and discovery to deployment. Working with open-source code? Machine Learning with SAS Viya has you covered – step-by-step instructions are given on how to use SAS Model Manager tools with open source. SAS Model Studio features are highlighted to show how to carry out machine learning in SAS Viya. Demonstrations, practice tasks, and quizzes are included to help sharpen your skills. In this book, you will learn about: Supervised and unsupervised machine learning Data preparation and dealing with missing and unstructured data Model building and selection Improving and optimizing models Model deployment and monitoring performance