Virtual Element Methods in Engineering Sciences

Virtual Element Methods in Engineering Sciences PDF Author: Peter Wriggers
Publisher: Springer Nature
ISBN: 3031392558
Category : Technology & Engineering
Languages : en
Pages : 457

Get Book Here

Book Description
This book provides a comprehensive treatment of the virtual element method (VEM) for engineering applications, focusing on its application in solid mechanics. Starting with a continuum mechanics background, the book establishes the necessary foundation for understanding the subsequent chapters. It then delves into the VEM's Ansatz functions and projection techniques, both for solids and the Poisson equation, which are fundamental to the method. The book explores the virtual element formulation for elasticity problems, offering insights into its advantages and capabilities. Moving beyond elasticity, the VEM is extended to problems in dynamics, enabling the analysis of dynamic systems with accuracy and efficiency. The book also covers the virtual element formulation for finite plasticity, providing a framework for simulating the behavior of materials undergoing plastic deformation. Furthermore, the VEM is applied to thermo-mechanical problems, where it allows for the investigation of coupled thermal and mechanical effects. The book dedicates a significant portion to the virtual elements for fracture processes, presenting techniques to model and analyze fractures in engineering structures. It also addresses contact problems, showcasing the VEM's effectiveness in dealing with contact phenomena. The virtual element method's versatility is further demonstrated through its application in homogenization, offering a means to understand the effective behavior of composite materials and heterogeneous structures. Finally, the book concludes with the virtual elements for beams and plates, exploring their application in these specific structural elements. Throughout the book, the authors emphasize the advantages of the virtual element method over traditional finite element discretization schemes, highlighting its accuracy, flexibility, and computational efficiency in various engineering contexts.

Virtual Element Methods in Engineering Sciences

Virtual Element Methods in Engineering Sciences PDF Author: Peter Wriggers
Publisher: Springer Nature
ISBN: 3031392558
Category : Technology & Engineering
Languages : en
Pages : 457

Get Book Here

Book Description
This book provides a comprehensive treatment of the virtual element method (VEM) for engineering applications, focusing on its application in solid mechanics. Starting with a continuum mechanics background, the book establishes the necessary foundation for understanding the subsequent chapters. It then delves into the VEM's Ansatz functions and projection techniques, both for solids and the Poisson equation, which are fundamental to the method. The book explores the virtual element formulation for elasticity problems, offering insights into its advantages and capabilities. Moving beyond elasticity, the VEM is extended to problems in dynamics, enabling the analysis of dynamic systems with accuracy and efficiency. The book also covers the virtual element formulation for finite plasticity, providing a framework for simulating the behavior of materials undergoing plastic deformation. Furthermore, the VEM is applied to thermo-mechanical problems, where it allows for the investigation of coupled thermal and mechanical effects. The book dedicates a significant portion to the virtual elements for fracture processes, presenting techniques to model and analyze fractures in engineering structures. It also addresses contact problems, showcasing the VEM's effectiveness in dealing with contact phenomena. The virtual element method's versatility is further demonstrated through its application in homogenization, offering a means to understand the effective behavior of composite materials and heterogeneous structures. Finally, the book concludes with the virtual elements for beams and plates, exploring their application in these specific structural elements. Throughout the book, the authors emphasize the advantages of the virtual element method over traditional finite element discretization schemes, highlighting its accuracy, flexibility, and computational efficiency in various engineering contexts.

The Virtual Element Method and Its Applications

The Virtual Element Method and Its Applications PDF Author: Paola F. Antonietti
Publisher:
ISBN: 9788303095312
Category : Electronic books
Languages : en
Pages : 0

Get Book Here

Book Description
The purpose of this book is to present the current state of the art of the Virtual Element Method (VEM) by collecting contributions from many of the most active researchers in this field and covering a broad range of topics: from the mathematical foundation to real life computational applications. The book is naturally divided into three parts. The first part of the book presents recent advances in theoretical and computational aspects of VEMs, discussing the generality of the meshes suitable to the VEM, the implementation of the VEM for linear and nonlinear PDEs, and the construction of discrete hessian complexes. The second part of the volume discusses Virtual Element discretization of paradigmatic linear and non-linear partial differential problems from computational mechanics, fluid dynamics, and wave propagation phenomena. Finally, the third part contains challenging applications such as the modeling of materials with fractures, magneto-hydrodynamics phenomena and contact solid mechanics. The book is intended for graduate students and researchers in mathematics and engineering fields, interested in learning novel numerical techniques for the solution of partial differential equations. It may as well serve as useful reference material for numerical analysts practitioners of the field.

Advances in Discretization Methods

Advances in Discretization Methods PDF Author: Giulio Ventura
Publisher: Springer
ISBN: 3319412469
Category : Technology & Engineering
Languages : en
Pages : 272

Get Book Here

Book Description
This book gathers selected contributions on emerging research work presented at the International Conference eXtended Discretization MethodS (X-DMS), held in Ferrara in September 2015. It highlights the most relevant advances made at the international level in the context of expanding classical discretization methods, like finite elements, to the numerical analysis of a variety of physical problems. The improvements are intended to achieve higher computational efficiency and to account for special features of the solution directly in the approximation space and/or in the discretization procedure. The methods described include, among others, partition of unity methods (meshfree, XFEM, GFEM), virtual element methods, fictitious domain methods, and special techniques for static and evolving interfaces. The uniting feature of all contributions is the direct link between computational methodologies and their application to different engineering areas.

Finite Element Methods for Engineering Sciences

Finite Element Methods for Engineering Sciences PDF Author: Joel Chaskalovic
Publisher: Springer Science & Business Media
ISBN: 3540763422
Category : Computers
Languages : en
Pages : 261

Get Book Here

Book Description
This self-tutorial offers a concise yet thorough grounding in the mathematics necessary for successfully applying FEMs to practical problems in science and engineering. Its unique teaching method explains the analysis using exercises and detailed solutions.

The Mathematical Theory of Finite Element Methods

The Mathematical Theory of Finite Element Methods PDF Author: Susanne Brenner
Publisher: Springer Science & Business Media
ISBN: 1475736584
Category : Mathematics
Languages : en
Pages : 369

Get Book Here

Book Description
A rigorous and thorough mathematical introduction to the subject; A clear and concise treatment of modern fast solution techniques such as multigrid and domain decomposition algorithms; Second edition contains two new chapters, as well as many new exercises; Previous edition sold over 3000 copies worldwide

One-Dimensional Finite Elements

One-Dimensional Finite Elements PDF Author: Andreas Öchsner
Publisher: Springer
ISBN: 331975145X
Category : Science
Languages : en
Pages : 432

Get Book Here

Book Description
This textbook presents finite element methods using exclusively one-dimensional elements. It presents the complex methodology in an easily understandable but mathematically correct fashion. The approach of one-dimensional elements enables the reader to focus on the understanding of the principles of basic and advanced mechanical problems. The reader will easily understand the assumptions and limitations of mechanical modeling as well as the underlying physics without struggling with complex mathematics. Although the description is easy, it remains scientifically correct. The approach using only one-dimensional elements covers not only standard problems but allows also for advanced topics such as plasticity or the mechanics of composite materials. Many examples illustrate the concepts and problems at the end of every chapter help to familiarize with the topics. Each chapter also includes a few exercise problems, with short answers provided at the end of the book. The second edition appears with a complete revision of all figures. It also presents a complete new chapter special elements and added the thermal conduction into the analysis of rod elements. The principle of virtual work has also been introduced for the derivation of the finite-element principal equation.

Nonlinear Finite Element Methods

Nonlinear Finite Element Methods PDF Author: Peter Wriggers
Publisher: Springer Science & Business Media
ISBN: 3540710019
Category : Technology & Engineering
Languages : en
Pages : 566

Get Book Here

Book Description
Finite element methods have become ever more important to engineers as tools for design and optimization, now even for solving non-linear technological problems. However, several aspects must be considered for finite-element simulations which are specific for non-linear problems: These problems require the knowledge and the understanding of theoretical foundations and their finite-element discretization as well as algorithms for solving the non-linear equations. This book provides the reader with the required knowledge covering the complete field of finite element analyses in solid mechanics. It is written for advanced students in engineering fields but serves also as an introduction into non-linear simulation for the practising engineer.

Mixed and Hybrid Finite Element Methods

Mixed and Hybrid Finite Element Methods PDF Author: Franco Brezzi
Publisher: Springer Science & Business Media
ISBN: 1461231728
Category : Mathematics
Languages : en
Pages : 361

Get Book Here

Book Description
Research on non-standard finite element methods is evolving rapidly and in this text Brezzi and Fortin give a general framework in which the development is taking place. The presentation is built around a few classic examples: Dirichlet's problem, Stokes problem, Linear elasticity. The authors provide with this publication an analysis of the methods in order to understand their properties as thoroughly as possible.

An Introduction to the Finite Element Method

An Introduction to the Finite Element Method PDF Author: Junuthula Narasimha Reddy
Publisher:
ISBN: 9780071244732
Category : Finite element method
Languages : en
Pages : 766

Get Book Here

Book Description
The book retains its strong conceptual approach, clearly examining the mathematical underpinnings of FEM, and providing a general approach of engineering application areas.Known for its detailed, carefully selected example problems and extensive selection of homework problems, the author has comprehensively covered a wide range of engineering areas making the book approriate for all engineering majors, and underscores the wide range of use FEM has in the professional world

The Finite Element Method for Boundary Value Problems

The Finite Element Method for Boundary Value Problems PDF Author: Karan S. Surana
Publisher: CRC Press
ISBN: 1498780512
Category : Science
Languages : en
Pages : 824

Get Book Here

Book Description
Written by two well-respected experts in the field, The Finite Element Method for Boundary Value Problems: Mathematics and Computations bridges the gap between applied mathematics and application-oriented computational studies using FEM. Mathematically rigorous, the FEM is presented as a method of approximation for differential operators that are mathematically classified as self-adjoint, non-self-adjoint, and non-linear, thus addressing totality of all BVPs in various areas of engineering, applied mathematics, and physical sciences. These classes of operators are utilized in various methods of approximation: Galerkin method, Petrov-Galerkin Method, weighted residual method, Galerkin method with weak form, least squares method based on residual functional, etc. to establish unconditionally stable finite element computational processes using calculus of variations. Readers are able to grasp the mathematical foundation of finite element method as well as its versatility of applications. h-, p-, and k-versions of finite element method, hierarchical approximations, convergence, error estimation, error computation, and adaptivity are additional significant aspects of this book.