Author: Stuart K. Tewksbury
Publisher: Springer Science & Business Media
ISBN: 1461316251
Category : Technology & Engineering
Languages : en
Pages : 456
Book Description
From the perspective of complex systems, conventional Ie's can be regarded as "discrete" devices interconnected according to system design objectives imposed at the circuit board level and higher levels in the system implementation hierarchy. However, silicon monolithic circuits have progressed to such complex functions that a transition from a philosophy of integrated circuits (Ie's) to one of integrated sys tems is necessary. Wafer-scale integration has played an important role over the past few years in highlighting the system level issues which will most significantly impact the implementation of complex monolithic systems and system components. Rather than being a revolutionary approach, wafer-scale integration will evolve naturally from VLSI as defect avoidance, fault tolerance and testing are introduced into VLSI circuits. Successful introduction of defect avoidance, for example, relaxes limits imposed by yield and cost on Ie dimensions, allowing the monolithic circuit's area to be chosen according to the natural partitioning of a system into individual functions rather than imposing area limits due to defect densities. The term "wafer level" is perhaps more appropriate than "wafer-scale". A "wafer-level" monolithic system component may have dimensions ranging from conventional yield-limited Ie dimensions to full wafer dimensions. In this sense, "wafer-scale" merely represents the obvious upper practical limit imposed by wafer sizes on the area of monolithic circuits. The transition to monolithic, wafer-level integrated systems will require a mapping of the full range of system design issues onto the design of monolithic circuit.
Wafer-Level Integrated Systems
Author: Stuart K. Tewksbury
Publisher: Springer Science & Business Media
ISBN: 1461316251
Category : Technology & Engineering
Languages : en
Pages : 456
Book Description
From the perspective of complex systems, conventional Ie's can be regarded as "discrete" devices interconnected according to system design objectives imposed at the circuit board level and higher levels in the system implementation hierarchy. However, silicon monolithic circuits have progressed to such complex functions that a transition from a philosophy of integrated circuits (Ie's) to one of integrated sys tems is necessary. Wafer-scale integration has played an important role over the past few years in highlighting the system level issues which will most significantly impact the implementation of complex monolithic systems and system components. Rather than being a revolutionary approach, wafer-scale integration will evolve naturally from VLSI as defect avoidance, fault tolerance and testing are introduced into VLSI circuits. Successful introduction of defect avoidance, for example, relaxes limits imposed by yield and cost on Ie dimensions, allowing the monolithic circuit's area to be chosen according to the natural partitioning of a system into individual functions rather than imposing area limits due to defect densities. The term "wafer level" is perhaps more appropriate than "wafer-scale". A "wafer-level" monolithic system component may have dimensions ranging from conventional yield-limited Ie dimensions to full wafer dimensions. In this sense, "wafer-scale" merely represents the obvious upper practical limit imposed by wafer sizes on the area of monolithic circuits. The transition to monolithic, wafer-level integrated systems will require a mapping of the full range of system design issues onto the design of monolithic circuit.
Publisher: Springer Science & Business Media
ISBN: 1461316251
Category : Technology & Engineering
Languages : en
Pages : 456
Book Description
From the perspective of complex systems, conventional Ie's can be regarded as "discrete" devices interconnected according to system design objectives imposed at the circuit board level and higher levels in the system implementation hierarchy. However, silicon monolithic circuits have progressed to such complex functions that a transition from a philosophy of integrated circuits (Ie's) to one of integrated sys tems is necessary. Wafer-scale integration has played an important role over the past few years in highlighting the system level issues which will most significantly impact the implementation of complex monolithic systems and system components. Rather than being a revolutionary approach, wafer-scale integration will evolve naturally from VLSI as defect avoidance, fault tolerance and testing are introduced into VLSI circuits. Successful introduction of defect avoidance, for example, relaxes limits imposed by yield and cost on Ie dimensions, allowing the monolithic circuit's area to be chosen according to the natural partitioning of a system into individual functions rather than imposing area limits due to defect densities. The term "wafer level" is perhaps more appropriate than "wafer-scale". A "wafer-level" monolithic system component may have dimensions ranging from conventional yield-limited Ie dimensions to full wafer dimensions. In this sense, "wafer-scale" merely represents the obvious upper practical limit imposed by wafer sizes on the area of monolithic circuits. The transition to monolithic, wafer-level integrated systems will require a mapping of the full range of system design issues onto the design of monolithic circuit.
Functional Programming Languages and Computer Architecture
Author: Jean-Pierre Jouannaud
Publisher: Springer Science & Business Media
ISBN: 9783540159759
Category : Computers
Languages : en
Pages : 424
Book Description
Publisher: Springer Science & Business Media
ISBN: 9783540159759
Category : Computers
Languages : en
Pages : 424
Book Description
VLSI for Artificial Intelligence
Author: Jose G. Delgado-Frias
Publisher: Springer Science & Business Media
ISBN: 1461316197
Category : Technology & Engineering
Languages : en
Pages : 285
Book Description
Publisher: Springer Science & Business Media
ISBN: 1461316197
Category : Technology & Engineering
Languages : en
Pages : 285
Book Description
Index to IEEE Publications
Author: Institute of Electrical and Electronics Engineers
Publisher:
ISBN:
Category : Electric engineering
Languages : en
Pages : 1168
Book Description
Issues for 1973- cover the entire IEEE technical literature.
Publisher:
ISBN:
Category : Electric engineering
Languages : en
Pages : 1168
Book Description
Issues for 1973- cover the entire IEEE technical literature.
VLSI Signal Processing, III
Author: Robert W. Brodersen
Publisher: Institute of Electrical & Electronics Engineers(IEEE)
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 560
Book Description
Publisher: Institute of Electrical & Electronics Engineers(IEEE)
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 560
Book Description
Design Methodologies for VLSI and Computer Architecture
Author: Doug A. Edwards
Publisher: North Holland
ISBN:
Category : Computers
Languages : en
Pages : 372
Book Description
Publisher: North Holland
ISBN:
Category : Computers
Languages : en
Pages : 372
Book Description
VLSI Systems and Computations
Author: H.T. Kung
Publisher: Springer Science & Business Media
ISBN: 3642684025
Category : Technology & Engineering
Languages : en
Pages : 426
Book Description
The papers in this book were presented at the CMU Conference on VLSI Systems and Computations, held October 19-21, 1981 in Pittsburgh, Pennsylvania. The conference was organized by the Computer Science Department, Carnegie-Mellon University and was partially supported by the National Science Foundation and the Office of Naval Research. These proceedings focus on the theory and design of computational systems using VLSI. Until very recently, integrated-circuit research and development were concentrated in the device physics and fabrication design disciplines and in the integrated-circuit industry itself. Within the last few years, a community of researchers is growing to address issues closer to computer science: the relationship between computing structures and the physical structures that implement them; the specification and verification of computational procosses implemented in VLSI; the use of massively parallel computing made possible by VLSI; the design of special purpose computing architectures; and the changes in general-purpose computer architecture that VLSI makes possible. It is likely that the future exploitation of VLSI technology depends as much on structural and design innovations as on advances in fabrication technology. The book is divided into nine sections: - Invited Papers. Six distinguished researchers from industry and academia presented invited papers. - Models of Computation. The papers in this section deal with abstracting the properties of VLSI circuits into models that can be used to analyze the chip area, time or energy required for a particular computation.
Publisher: Springer Science & Business Media
ISBN: 3642684025
Category : Technology & Engineering
Languages : en
Pages : 426
Book Description
The papers in this book were presented at the CMU Conference on VLSI Systems and Computations, held October 19-21, 1981 in Pittsburgh, Pennsylvania. The conference was organized by the Computer Science Department, Carnegie-Mellon University and was partially supported by the National Science Foundation and the Office of Naval Research. These proceedings focus on the theory and design of computational systems using VLSI. Until very recently, integrated-circuit research and development were concentrated in the device physics and fabrication design disciplines and in the integrated-circuit industry itself. Within the last few years, a community of researchers is growing to address issues closer to computer science: the relationship between computing structures and the physical structures that implement them; the specification and verification of computational procosses implemented in VLSI; the use of massively parallel computing made possible by VLSI; the design of special purpose computing architectures; and the changes in general-purpose computer architecture that VLSI makes possible. It is likely that the future exploitation of VLSI technology depends as much on structural and design innovations as on advances in fabrication technology. The book is divided into nine sections: - Invited Papers. Six distinguished researchers from industry and academia presented invited papers. - Models of Computation. The papers in this section deal with abstracting the properties of VLSI circuits into models that can be used to analyze the chip area, time or energy required for a particular computation.
The Engineering Index Annual
Author:
Publisher:
ISBN:
Category : Engineering
Languages : en
Pages : 2264
Book Description
Since its creation in 1884, Engineering Index has covered virtually every major engineering innovation from around the world. It serves as the historical record of virtually every major engineering innovation of the 20th century. Recent content is a vital resource for current awareness, new production information, technological forecasting and competitive intelligence. The world?s most comprehensive interdisciplinary engineering database, Engineering Index contains over 10.7 million records. Each year, over 500,000 new abstracts are added from over 5,000 scholarly journals, trade magazines, and conference proceedings. Coverage spans over 175 engineering disciplines from over 80 countries. Updated weekly.
Publisher:
ISBN:
Category : Engineering
Languages : en
Pages : 2264
Book Description
Since its creation in 1884, Engineering Index has covered virtually every major engineering innovation from around the world. It serves as the historical record of virtually every major engineering innovation of the 20th century. Recent content is a vital resource for current awareness, new production information, technological forecasting and competitive intelligence. The world?s most comprehensive interdisciplinary engineering database, Engineering Index contains over 10.7 million records. Each year, over 500,000 new abstracts are added from over 5,000 scholarly journals, trade magazines, and conference proceedings. Coverage spans over 175 engineering disciplines from over 80 countries. Updated weekly.
Science Abstracts
Author:
Publisher:
ISBN:
Category : Electrical engineering
Languages : en
Pages : 1874
Book Description
Publisher:
ISBN:
Category : Electrical engineering
Languages : en
Pages : 1874
Book Description
Supercomputing Systems
Author: Svetlana Kartashev
Publisher: New York : Van Nostrand Reinhold
ISBN: 9780442256159
Category : Computers
Languages : en
Pages : 658
Book Description
Publisher: New York : Van Nostrand Reinhold
ISBN: 9780442256159
Category : Computers
Languages : en
Pages : 658
Book Description