Author: Robert M. Thrall
Publisher: Courier Corporation
ISBN: 0486321053
Category : Mathematics
Languages : en
Pages : 340
Book Description
Students receive the benefits of axiom-based mathematical reasoning as well as a grasp of concrete formulations. Suitable as a primary or supplementary text for college-level courses in linear algebra. 1957 edition.
Vector Spaces and Matrices
Author: Robert M. Thrall
Publisher: Courier Corporation
ISBN: 0486321053
Category : Mathematics
Languages : en
Pages : 340
Book Description
Students receive the benefits of axiom-based mathematical reasoning as well as a grasp of concrete formulations. Suitable as a primary or supplementary text for college-level courses in linear algebra. 1957 edition.
Publisher: Courier Corporation
ISBN: 0486321053
Category : Mathematics
Languages : en
Pages : 340
Book Description
Students receive the benefits of axiom-based mathematical reasoning as well as a grasp of concrete formulations. Suitable as a primary or supplementary text for college-level courses in linear algebra. 1957 edition.
Groups, Matrices, and Vector Spaces
Author: James B. Carrell
Publisher: Springer
ISBN: 038779428X
Category : Mathematics
Languages : en
Pages : 415
Book Description
This unique text provides a geometric approach to group theory and linear algebra, bringing to light the interesting ways in which these subjects interact. Requiring few prerequisites beyond understanding the notion of a proof, the text aims to give students a strong foundation in both geometry and algebra. Starting with preliminaries (relations, elementary combinatorics, and induction), the book then proceeds to the core topics: the elements of the theory of groups and fields (Lagrange's Theorem, cosets, the complex numbers and the prime fields), matrix theory and matrix groups, determinants, vector spaces, linear mappings, eigentheory and diagonalization, Jordan decomposition and normal form, normal matrices, and quadratic forms. The final two chapters consist of a more intensive look at group theory, emphasizing orbit stabilizer methods, and an introduction to linear algebraic groups, which enriches the notion of a matrix group. Applications involving symm etry groups, determinants, linear coding theory and cryptography are interwoven throughout. Each section ends with ample practice problems assisting the reader to better understand the material. Some of the applications are illustrated in the chapter appendices. The author's unique melding of topics evolved from a two semester course that he taught at the University of British Columbia consisting of an undergraduate honors course on abstract linear algebra and a similar course on the theory of groups. The combined content from both makes this rare text ideal for a year-long course, covering more material than most linear algebra texts. It is also optimal for independent study and as a supplementary text for various professional applications. Advanced undergraduate or graduate students in mathematics, physics, computer science and engineering will find this book both useful and enjoyable.
Publisher: Springer
ISBN: 038779428X
Category : Mathematics
Languages : en
Pages : 415
Book Description
This unique text provides a geometric approach to group theory and linear algebra, bringing to light the interesting ways in which these subjects interact. Requiring few prerequisites beyond understanding the notion of a proof, the text aims to give students a strong foundation in both geometry and algebra. Starting with preliminaries (relations, elementary combinatorics, and induction), the book then proceeds to the core topics: the elements of the theory of groups and fields (Lagrange's Theorem, cosets, the complex numbers and the prime fields), matrix theory and matrix groups, determinants, vector spaces, linear mappings, eigentheory and diagonalization, Jordan decomposition and normal form, normal matrices, and quadratic forms. The final two chapters consist of a more intensive look at group theory, emphasizing orbit stabilizer methods, and an introduction to linear algebraic groups, which enriches the notion of a matrix group. Applications involving symm etry groups, determinants, linear coding theory and cryptography are interwoven throughout. Each section ends with ample practice problems assisting the reader to better understand the material. Some of the applications are illustrated in the chapter appendices. The author's unique melding of topics evolved from a two semester course that he taught at the University of British Columbia consisting of an undergraduate honors course on abstract linear algebra and a similar course on the theory of groups. The combined content from both makes this rare text ideal for a year-long course, covering more material than most linear algebra texts. It is also optimal for independent study and as a supplementary text for various professional applications. Advanced undergraduate or graduate students in mathematics, physics, computer science and engineering will find this book both useful and enjoyable.
Vector Spaces and Matrices in Physics
Author: M. C. Jain
Publisher: CRC Press
ISBN: 9780849309786
Category : Mathematics
Languages : en
Pages : 184
Book Description
The theory of vector spaces and matrices is an essential part of the mathematical background required by physicists. Most books on the subject, however, do not adequately meet the requirements of physics courses-they tend to be either highly mathematical or too elementary. Books that focus on mathematical theory may render the subject too dry to hold the interest of physics students, while books that are more elementary tend to neglect some topics that are vital in the development of physical theories. In particular, there is often very little discussion of vector spaces, and many books introduce matrices merely as a computational tool. Vector Spaces and Matrices in Physics fills the gap between the elementary and the heavily mathematical treatments of the subject with an approach and presentation ideal for graduate-level physics students. After building a foundation in vector spaces and matrix algebra, the author takes care to emphasize the role of matrices as representations of linear transformations on vector spaces, a concept of matrix theory that is essential for a proper understanding of quantum mechanics. He includes numerous solved and unsolved problems, and enough hints for the unsolved problems to make the book self-sufficient. Developed through many years of lecture notes, Vector Spaces and Matrices in Physics was written primarily as a graduate and post-graduate textbook and as a reference for physicists. Its clear presentation and concise but thorough coverage, however, make it useful for engineers, chemists, economists, and anyone who needs a background in matrices for application in other areas.
Publisher: CRC Press
ISBN: 9780849309786
Category : Mathematics
Languages : en
Pages : 184
Book Description
The theory of vector spaces and matrices is an essential part of the mathematical background required by physicists. Most books on the subject, however, do not adequately meet the requirements of physics courses-they tend to be either highly mathematical or too elementary. Books that focus on mathematical theory may render the subject too dry to hold the interest of physics students, while books that are more elementary tend to neglect some topics that are vital in the development of physical theories. In particular, there is often very little discussion of vector spaces, and many books introduce matrices merely as a computational tool. Vector Spaces and Matrices in Physics fills the gap between the elementary and the heavily mathematical treatments of the subject with an approach and presentation ideal for graduate-level physics students. After building a foundation in vector spaces and matrix algebra, the author takes care to emphasize the role of matrices as representations of linear transformations on vector spaces, a concept of matrix theory that is essential for a proper understanding of quantum mechanics. He includes numerous solved and unsolved problems, and enough hints for the unsolved problems to make the book self-sufficient. Developed through many years of lecture notes, Vector Spaces and Matrices in Physics was written primarily as a graduate and post-graduate textbook and as a reference for physicists. Its clear presentation and concise but thorough coverage, however, make it useful for engineers, chemists, economists, and anyone who needs a background in matrices for application in other areas.
Circuits, Matrices and Linear Vector Spaces
Author: Lawrence P. Huelsman
Publisher: Courier Corporation
ISBN: 0486280446
Category : Technology & Engineering
Languages : en
Pages : 306
Book Description
This high-level text explains the mathematics behind basic circuit theory. It covers matrix algebra, the basic theory of n-dimensional spaces, and applications to linear systems. Numerous problems. 1963 edition.
Publisher: Courier Corporation
ISBN: 0486280446
Category : Technology & Engineering
Languages : en
Pages : 306
Book Description
This high-level text explains the mathematics behind basic circuit theory. It covers matrix algebra, the basic theory of n-dimensional spaces, and applications to linear systems. Numerous problems. 1963 edition.
A Vector Space Approach to Geometry
Author: Melvin Hausner
Publisher: Courier Dover Publications
ISBN: 0486835391
Category : Mathematics
Languages : en
Pages : 417
Book Description
A fascinating exploration of the correlation between geometry and linear algebra, this text also offers elementary explanations of the role of geometry in other branches of math and science. 1965 edition.
Publisher: Courier Dover Publications
ISBN: 0486835391
Category : Mathematics
Languages : en
Pages : 417
Book Description
A fascinating exploration of the correlation between geometry and linear algebra, this text also offers elementary explanations of the role of geometry in other branches of math and science. 1965 edition.
Linear Algebra and Matrix Theory
Author: Jimmie Gilbert
Publisher: Elsevier
ISBN: 0080510256
Category : Mathematics
Languages : en
Pages : 405
Book Description
Intended for a serious first course or a second course, this textbook will carry students beyond eigenvalues and eigenvectors to the classification of bilinear forms, to normal matrices, to spectral decompositions, and to the Jordan form. The authors approach their subject in a comprehensive and accessible manner, presenting notation and terminology clearly and concisely, and providing smooth transitions between topics. The examples and exercises are well designed and will aid diligent students in understanding both computational and theoretical aspects. In all, the straightest, smoothest path to the heart of linear algebra.* Special Features: * Provides complete coverage of central material.* Presents clear and direct explanations.* Includes classroom tested material.* Bridges the gap from lower division to upper division work.* Allows instructors alternatives for introductory or second-level courses.
Publisher: Elsevier
ISBN: 0080510256
Category : Mathematics
Languages : en
Pages : 405
Book Description
Intended for a serious first course or a second course, this textbook will carry students beyond eigenvalues and eigenvectors to the classification of bilinear forms, to normal matrices, to spectral decompositions, and to the Jordan form. The authors approach their subject in a comprehensive and accessible manner, presenting notation and terminology clearly and concisely, and providing smooth transitions between topics. The examples and exercises are well designed and will aid diligent students in understanding both computational and theoretical aspects. In all, the straightest, smoothest path to the heart of linear algebra.* Special Features: * Provides complete coverage of central material.* Presents clear and direct explanations.* Includes classroom tested material.* Bridges the gap from lower division to upper division work.* Allows instructors alternatives for introductory or second-level courses.
Matrix Methods and Vector Spaces in Physics
Author: Sharma
Publisher: PHI Learning Pvt. Ltd.
ISBN: 8120338669
Category : Science
Languages : en
Pages : 498
Book Description
They have wide applications in a number of subjects ranging from solid state physics, solid/fluid mechanics to relativity and electromagnetics. This well-written book gives, in an easy-to-read style, a step-by-step and comprehensive understanding about the various concepts, theories and applications of vector spaces, matrices and tensors. The book equips the reader with the fundamental knowledge in such subjects as matrix theory, linear algebraic equations, applications of eigenvalues and eigenvectors, diagonalisation process, quadratic forms, Cartesian tensors and more.
Publisher: PHI Learning Pvt. Ltd.
ISBN: 8120338669
Category : Science
Languages : en
Pages : 498
Book Description
They have wide applications in a number of subjects ranging from solid state physics, solid/fluid mechanics to relativity and electromagnetics. This well-written book gives, in an easy-to-read style, a step-by-step and comprehensive understanding about the various concepts, theories and applications of vector spaces, matrices and tensors. The book equips the reader with the fundamental knowledge in such subjects as matrix theory, linear algebraic equations, applications of eigenvalues and eigenvectors, diagonalisation process, quadratic forms, Cartesian tensors and more.
Linear Algebra and Matrices
Author: Shmuel Friedland
Publisher: SIAM
ISBN: 161197514X
Category : Mathematics
Languages : en
Pages : 301
Book Description
This introductory textbook grew out of several courses in linear algebra given over more than a decade and includes such helpful material as constructive discussions about the motivation of fundamental concepts, many worked-out problems in each chapter, and topics rarely covered in typical linear algebra textbooks.The authors use abstract notions and arguments to give the complete proof of the Jordan canonical form and, more generally, the rational canonical form of square matrices over fields. They also provide the notion of tensor products of vector spaces and linear transformations. Matrices are treated in depth, with coverage of the stability of matrix iterations, the eigenvalue properties of linear transformations in inner product spaces, singular value decomposition, and min-max characterizations of Hermitian matrices and nonnegative irreducible matrices. The authors show the many topics and tools encompassed by modern linear algebra to emphasize its relationship to other areas of mathematics. The text is intended for advanced undergraduate students. Beginning graduate students seeking an introduction to the subject will also find it of interest.
Publisher: SIAM
ISBN: 161197514X
Category : Mathematics
Languages : en
Pages : 301
Book Description
This introductory textbook grew out of several courses in linear algebra given over more than a decade and includes such helpful material as constructive discussions about the motivation of fundamental concepts, many worked-out problems in each chapter, and topics rarely covered in typical linear algebra textbooks.The authors use abstract notions and arguments to give the complete proof of the Jordan canonical form and, more generally, the rational canonical form of square matrices over fields. They also provide the notion of tensor products of vector spaces and linear transformations. Matrices are treated in depth, with coverage of the stability of matrix iterations, the eigenvalue properties of linear transformations in inner product spaces, singular value decomposition, and min-max characterizations of Hermitian matrices and nonnegative irreducible matrices. The authors show the many topics and tools encompassed by modern linear algebra to emphasize its relationship to other areas of mathematics. The text is intended for advanced undergraduate students. Beginning graduate students seeking an introduction to the subject will also find it of interest.
Introduction to Linear and Matrix Algebra
Author: Nathaniel Johnston
Publisher: Springer Nature
ISBN: 3030528111
Category : Mathematics
Languages : en
Pages : 482
Book Description
This textbook emphasizes the interplay between algebra and geometry to motivate the study of linear algebra. Matrices and linear transformations are presented as two sides of the same coin, with their connection motivating inquiry throughout the book. By focusing on this interface, the author offers a conceptual appreciation of the mathematics that is at the heart of further theory and applications. Those continuing to a second course in linear algebra will appreciate the companion volume Advanced Linear and Matrix Algebra. Starting with an introduction to vectors, matrices, and linear transformations, the book focuses on building a geometric intuition of what these tools represent. Linear systems offer a powerful application of the ideas seen so far, and lead onto the introduction of subspaces, linear independence, bases, and rank. Investigation then focuses on the algebraic properties of matrices that illuminate the geometry of the linear transformations that they represent. Determinants, eigenvalues, and eigenvectors all benefit from this geometric viewpoint. Throughout, “Extra Topic” sections augment the core content with a wide range of ideas and applications, from linear programming, to power iteration and linear recurrence relations. Exercises of all levels accompany each section, including many designed to be tackled using computer software. Introduction to Linear and Matrix Algebra is ideal for an introductory proof-based linear algebra course. The engaging color presentation and frequent marginal notes showcase the author’s visual approach. Students are assumed to have completed one or two university-level mathematics courses, though calculus is not an explicit requirement. Instructors will appreciate the ample opportunities to choose topics that align with the needs of each classroom, and the online homework sets that are available through WeBWorK.
Publisher: Springer Nature
ISBN: 3030528111
Category : Mathematics
Languages : en
Pages : 482
Book Description
This textbook emphasizes the interplay between algebra and geometry to motivate the study of linear algebra. Matrices and linear transformations are presented as two sides of the same coin, with their connection motivating inquiry throughout the book. By focusing on this interface, the author offers a conceptual appreciation of the mathematics that is at the heart of further theory and applications. Those continuing to a second course in linear algebra will appreciate the companion volume Advanced Linear and Matrix Algebra. Starting with an introduction to vectors, matrices, and linear transformations, the book focuses on building a geometric intuition of what these tools represent. Linear systems offer a powerful application of the ideas seen so far, and lead onto the introduction of subspaces, linear independence, bases, and rank. Investigation then focuses on the algebraic properties of matrices that illuminate the geometry of the linear transformations that they represent. Determinants, eigenvalues, and eigenvectors all benefit from this geometric viewpoint. Throughout, “Extra Topic” sections augment the core content with a wide range of ideas and applications, from linear programming, to power iteration and linear recurrence relations. Exercises of all levels accompany each section, including many designed to be tackled using computer software. Introduction to Linear and Matrix Algebra is ideal for an introductory proof-based linear algebra course. The engaging color presentation and frequent marginal notes showcase the author’s visual approach. Students are assumed to have completed one or two university-level mathematics courses, though calculus is not an explicit requirement. Instructors will appreciate the ample opportunities to choose topics that align with the needs of each classroom, and the online homework sets that are available through WeBWorK.
Differential Equations and Linear Algebra
Author: Gilbert Strang
Publisher: Wellesley-Cambridge Press
ISBN: 9780980232790
Category : Mathematics
Languages : en
Pages : 0
Book Description
Differential equations and linear algebra are two central topics in the undergraduate mathematics curriculum. This innovative textbook allows the two subjects to be developed either separately or together, illuminating the connections between two fundamental topics, and giving increased flexibility to instructors. It can be used either as a semester-long course in differential equations, or as a one-year course in differential equations, linear algebra, and applications. Beginning with the basics of differential equations, it covers first and second order equations, graphical and numerical methods, and matrix equations. The book goes on to present the fundamentals of vector spaces, followed by eigenvalues and eigenvectors, positive definiteness, integral transform methods and applications to PDEs. The exposition illuminates the natural correspondence between solution methods for systems of equations in discrete and continuous settings. The topics draw on the physical sciences, engineering and economics, reflecting the author's distinguished career as an applied mathematician and expositor.
Publisher: Wellesley-Cambridge Press
ISBN: 9780980232790
Category : Mathematics
Languages : en
Pages : 0
Book Description
Differential equations and linear algebra are two central topics in the undergraduate mathematics curriculum. This innovative textbook allows the two subjects to be developed either separately or together, illuminating the connections between two fundamental topics, and giving increased flexibility to instructors. It can be used either as a semester-long course in differential equations, or as a one-year course in differential equations, linear algebra, and applications. Beginning with the basics of differential equations, it covers first and second order equations, graphical and numerical methods, and matrix equations. The book goes on to present the fundamentals of vector spaces, followed by eigenvalues and eigenvectors, positive definiteness, integral transform methods and applications to PDEs. The exposition illuminates the natural correspondence between solution methods for systems of equations in discrete and continuous settings. The topics draw on the physical sciences, engineering and economics, reflecting the author's distinguished career as an applied mathematician and expositor.