Author: Guillermo Curbera
Publisher: Springer Science & Business Media
ISBN: 3034602111
Category : Mathematics
Languages : en
Pages : 382
Book Description
This volume contains a selection of articles on the theme "vector measures, integration and applications" together with some related topics. The articles consist of both survey style and original research papers, are written by experts in thearea and present a succinct account of recent and up-to-date knowledge. The topic is interdisciplinary by nature and involves areas such as measure and integration (scalar, vector and operator-valued), classical and harmonic analysis, operator theory, non-commutative integration, andfunctional analysis. The material is of interest to experts, young researchers and postgraduate students.
Vector Measures, Integration and Related Topics
Author: Guillermo Curbera
Publisher: Springer Science & Business Media
ISBN: 3034602111
Category : Mathematics
Languages : en
Pages : 382
Book Description
This volume contains a selection of articles on the theme "vector measures, integration and applications" together with some related topics. The articles consist of both survey style and original research papers, are written by experts in thearea and present a succinct account of recent and up-to-date knowledge. The topic is interdisciplinary by nature and involves areas such as measure and integration (scalar, vector and operator-valued), classical and harmonic analysis, operator theory, non-commutative integration, andfunctional analysis. The material is of interest to experts, young researchers and postgraduate students.
Publisher: Springer Science & Business Media
ISBN: 3034602111
Category : Mathematics
Languages : en
Pages : 382
Book Description
This volume contains a selection of articles on the theme "vector measures, integration and applications" together with some related topics. The articles consist of both survey style and original research papers, are written by experts in thearea and present a succinct account of recent and up-to-date knowledge. The topic is interdisciplinary by nature and involves areas such as measure and integration (scalar, vector and operator-valued), classical and harmonic analysis, operator theory, non-commutative integration, andfunctional analysis. The material is of interest to experts, young researchers and postgraduate students.
Vector Measures
Author: Joseph Diestel
Publisher: American Mathematical Soc.
ISBN: 0821815156
Category : Mathematics
Languages : en
Pages : 338
Book Description
In this survey the authors endeavor to give a comprehensive examination of the theory of measures having values in Banach spaces. The interplay between topological and geometric properties of Banach spaces and the properties of measures having values in Banach spaces is the unifying theme. The first chapter deals with countably additive vector measures finitely additive vector measures, the Orlicz-Pettis theorem and its relatives. Chapter II concentrates on measurable vector valued functions and the Bochner integral. Chapter III begins the study of the interplay among the Radon-Nikodym theorem for vector measures, operators on $L_1$ and topological properties of Banach spaces. A variety of applications is given in the next chapter. Chapter V deals with martingales of Bochner integrable functions and their relation to dentable subsets of Banach spaces. Chapter VI is devoted to a measure-theoretic study of weakly compact absolutely summing and nuclear operators on spaces of continuous functions. In Chapter VII a detailed study of the geometry of Banach spaces with the Radon-Nikodym property is given. The next chapter deals with the use of Radon-Nikodym theorems in the study of tensor products of Banach spaces. The last chapter concludes the survey with a discussion of the Liapounoff convexity theorem and other geometric properties of the range of a vector measure. Accompanying each chapter is an extensive survey of the literature and open problems.
Publisher: American Mathematical Soc.
ISBN: 0821815156
Category : Mathematics
Languages : en
Pages : 338
Book Description
In this survey the authors endeavor to give a comprehensive examination of the theory of measures having values in Banach spaces. The interplay between topological and geometric properties of Banach spaces and the properties of measures having values in Banach spaces is the unifying theme. The first chapter deals with countably additive vector measures finitely additive vector measures, the Orlicz-Pettis theorem and its relatives. Chapter II concentrates on measurable vector valued functions and the Bochner integral. Chapter III begins the study of the interplay among the Radon-Nikodym theorem for vector measures, operators on $L_1$ and topological properties of Banach spaces. A variety of applications is given in the next chapter. Chapter V deals with martingales of Bochner integrable functions and their relation to dentable subsets of Banach spaces. Chapter VI is devoted to a measure-theoretic study of weakly compact absolutely summing and nuclear operators on spaces of continuous functions. In Chapter VII a detailed study of the geometry of Banach spaces with the Radon-Nikodym property is given. The next chapter deals with the use of Radon-Nikodym theorems in the study of tensor products of Banach spaces. The last chapter concludes the survey with a discussion of the Liapounoff convexity theorem and other geometric properties of the range of a vector measure. Accompanying each chapter is an extensive survey of the literature and open problems.
Vector Measures, Integration and Related Topics
Author:
Publisher:
ISBN: 9783034602167
Category :
Languages : en
Pages : 398
Book Description
Publisher:
ISBN: 9783034602167
Category :
Languages : en
Pages : 398
Book Description
Vector Integration and Stochastic Integration in Banach Spaces
Author: Nicolae Dinculeanu
Publisher: John Wiley & Sons
ISBN: 1118031261
Category : Mathematics
Languages : en
Pages : 446
Book Description
A breakthrough approach to the theory and applications of stochastic integration The theory of stochastic integration has become an intensely studied topic in recent years, owing to its extraordinarily successful application to financial mathematics, stochastic differential equations, and more. This book features a new measure theoretic approach to stochastic integration, opening up the field for researchers in measure and integration theory, functional analysis, probability theory, and stochastic processes. World-famous expert on vector and stochastic integration in Banach spaces Nicolae Dinculeanu compiles and consolidates information from disparate journal articles-including his own results-presenting a comprehensive, up-to-date treatment of the theory in two major parts. He first develops a general integration theory, discussing vector integration with respect to measures with finite semivariation, then applies the theory to stochastic integration in Banach spaces. Vector Integration and Stochastic Integration in Banach Spaces goes far beyond the typical treatment of the scalar case given in other books on the subject. Along with such applications of the vector integration as the Reisz representation theorem and the Stieltjes integral for functions of one or two variables with finite semivariation, it explores the emergence of new classes of summable processes that make applications possible, including square integrable martingales in Hilbert spaces and processes with integrable variation or integrable semivariation in Banach spaces. Numerous references to existing results supplement this exciting, breakthrough work.
Publisher: John Wiley & Sons
ISBN: 1118031261
Category : Mathematics
Languages : en
Pages : 446
Book Description
A breakthrough approach to the theory and applications of stochastic integration The theory of stochastic integration has become an intensely studied topic in recent years, owing to its extraordinarily successful application to financial mathematics, stochastic differential equations, and more. This book features a new measure theoretic approach to stochastic integration, opening up the field for researchers in measure and integration theory, functional analysis, probability theory, and stochastic processes. World-famous expert on vector and stochastic integration in Banach spaces Nicolae Dinculeanu compiles and consolidates information from disparate journal articles-including his own results-presenting a comprehensive, up-to-date treatment of the theory in two major parts. He first develops a general integration theory, discussing vector integration with respect to measures with finite semivariation, then applies the theory to stochastic integration in Banach spaces. Vector Integration and Stochastic Integration in Banach Spaces goes far beyond the typical treatment of the scalar case given in other books on the subject. Along with such applications of the vector integration as the Reisz representation theorem and the Stieltjes integral for functions of one or two variables with finite semivariation, it explores the emergence of new classes of summable processes that make applications possible, including square integrable martingales in Hilbert spaces and processes with integrable variation or integrable semivariation in Banach spaces. Numerous references to existing results supplement this exciting, breakthrough work.
Topics in Complex Analysis and Operator Theory
Author: Oscar Blasco
Publisher: American Mathematical Soc.
ISBN: 0821852752
Category : Mathematics
Languages : en
Pages : 266
Book Description
This book contains the lecture notes as well as some invited papers presented at the Third Winter School in Complex Analysis, Operator Theory and Applications held February 2-5, 2010, in Valencia, Spain. The book is divided into two parts. The first is an extended self-contained version of the mini-courses taught at the School. The papers in this first part are: Notes on real analytic functions and classical operators, by Pawel Domanski; Shining a Hilbertian lamp on the bidisk, by John E. McCarthy; Selected problems in perturbation theory, by Vladimir V. Peller; and Composition operators on Hardy-Orlicz spaces, by Luis Rodriguez-Piazza. The second part consists of several research papers on recent advances in the area and some survey articles of an expository character. The articles in this second part are: Remarks on weighted mixed norm spaces, by O. Blasco; Interpolation subspaces of $L^1$ of a vector measure and norm inequalities for the integration operator, by J.M. Calabuig, J. Rodriguez, and E.A. Sanchez-Perez; On the spectra of algebras of analytic functions, by D. Carando, D. Garcia, M. Maestre, and P. Sevilla-Peris; Holomorphic self-maps of the disk intertwining two linear fractional maps, by M.D. Contreras, S. Diaz-Madrigal, M.J. Martin, and D. Vukotic; ABC-type estimates via Garsia-type norms, by K.M. Dyakonov; and Volterra type operators on Bergman spaces with exponential weights, by J. Pau and J.A. Pelaez. The topics selected for the mini-courses cover several aspects of complex analysis and operator theory that play important roles in understanding connections between different areas that are considered in fashion these days. This part is aimed at graduate students and young researchers. The courses are self-contained, focusing on those aspects that are basic and that can lead the readers to a quick understanding of the theories presented in each topic. They start with the classical results and reach a selection of open problems in each case. The research and survey articles are aimed at young researchers in the area, as well as post-doc and senior researchers interested in complex analysis and operator theory. This book is published in cooperation with Real Sociedad Matematica Espanola.
Publisher: American Mathematical Soc.
ISBN: 0821852752
Category : Mathematics
Languages : en
Pages : 266
Book Description
This book contains the lecture notes as well as some invited papers presented at the Third Winter School in Complex Analysis, Operator Theory and Applications held February 2-5, 2010, in Valencia, Spain. The book is divided into two parts. The first is an extended self-contained version of the mini-courses taught at the School. The papers in this first part are: Notes on real analytic functions and classical operators, by Pawel Domanski; Shining a Hilbertian lamp on the bidisk, by John E. McCarthy; Selected problems in perturbation theory, by Vladimir V. Peller; and Composition operators on Hardy-Orlicz spaces, by Luis Rodriguez-Piazza. The second part consists of several research papers on recent advances in the area and some survey articles of an expository character. The articles in this second part are: Remarks on weighted mixed norm spaces, by O. Blasco; Interpolation subspaces of $L^1$ of a vector measure and norm inequalities for the integration operator, by J.M. Calabuig, J. Rodriguez, and E.A. Sanchez-Perez; On the spectra of algebras of analytic functions, by D. Carando, D. Garcia, M. Maestre, and P. Sevilla-Peris; Holomorphic self-maps of the disk intertwining two linear fractional maps, by M.D. Contreras, S. Diaz-Madrigal, M.J. Martin, and D. Vukotic; ABC-type estimates via Garsia-type norms, by K.M. Dyakonov; and Volterra type operators on Bergman spaces with exponential weights, by J. Pau and J.A. Pelaez. The topics selected for the mini-courses cover several aspects of complex analysis and operator theory that play important roles in understanding connections between different areas that are considered in fashion these days. This part is aimed at graduate students and young researchers. The courses are self-contained, focusing on those aspects that are basic and that can lead the readers to a quick understanding of the theories presented in each topic. They start with the classical results and reach a selection of open problems in each case. The research and survey articles are aimed at young researchers in the area, as well as post-doc and senior researchers interested in complex analysis and operator theory. This book is published in cooperation with Real Sociedad Matematica Espanola.
Random and Vector Measures
Author: Malempati Madhusudana Rao
Publisher: World Scientific
ISBN: 9814350818
Category : Mathematics
Languages : en
Pages : 553
Book Description
Deals with the structural analysis of vector and random (or both) valued countably additive measures, and used for integral representations of random fields. This book analyzes several stationary aspects and related processes.
Publisher: World Scientific
ISBN: 9814350818
Category : Mathematics
Languages : en
Pages : 553
Book Description
Deals with the structural analysis of vector and random (or both) valued countably additive measures, and used for integral representations of random fields. This book analyzes several stationary aspects and related processes.
Singular Bilinear Integrals
Author: Brian Raymond Frederick Jefferies
Publisher: World Scientific
ISBN: 9813207590
Category : Mathematics
Languages : en
Pages : 253
Book Description
'This is a deep and beautiful monograph in functional analysis, at the interface with mathematical physics.'Mathematical ReviewsThe integration of vector valued functions with respect to vector valued measures, especially spectral measures, is developed in view of applications in operator theory, scattering theory and semiclassical approximation in quantum physics. New techniques are developed for bilinear integration in cases where the classical approach does not apply.
Publisher: World Scientific
ISBN: 9813207590
Category : Mathematics
Languages : en
Pages : 253
Book Description
'This is a deep and beautiful monograph in functional analysis, at the interface with mathematical physics.'Mathematical ReviewsThe integration of vector valued functions with respect to vector valued measures, especially spectral measures, is developed in view of applications in operator theory, scattering theory and semiclassical approximation in quantum physics. New techniques are developed for bilinear integration in cases where the classical approach does not apply.
Analysis in Banach Spaces
Author: Tuomas Hytönen
Publisher: Springer
ISBN: 3319485202
Category : Mathematics
Languages : en
Pages : 628
Book Description
The present volume develops the theory of integration in Banach spaces, martingales and UMD spaces, and culminates in a treatment of the Hilbert transform, Littlewood-Paley theory and the vector-valued Mihlin multiplier theorem. Over the past fifteen years, motivated by regularity problems in evolution equations, there has been tremendous progress in the analysis of Banach space-valued functions and processes. The contents of this extensive and powerful toolbox have been mostly scattered around in research papers and lecture notes. Collecting this diverse body of material into a unified and accessible presentation fills a gap in the existing literature. The principal audience that we have in mind consists of researchers who need and use Analysis in Banach Spaces as a tool for studying problems in partial differential equations, harmonic analysis, and stochastic analysis. Self-contained and offering complete proofs, this work is accessible to graduate students and researchers with a background in functional analysis or related areas.
Publisher: Springer
ISBN: 3319485202
Category : Mathematics
Languages : en
Pages : 628
Book Description
The present volume develops the theory of integration in Banach spaces, martingales and UMD spaces, and culminates in a treatment of the Hilbert transform, Littlewood-Paley theory and the vector-valued Mihlin multiplier theorem. Over the past fifteen years, motivated by regularity problems in evolution equations, there has been tremendous progress in the analysis of Banach space-valued functions and processes. The contents of this extensive and powerful toolbox have been mostly scattered around in research papers and lecture notes. Collecting this diverse body of material into a unified and accessible presentation fills a gap in the existing literature. The principal audience that we have in mind consists of researchers who need and use Analysis in Banach Spaces as a tool for studying problems in partial differential equations, harmonic analysis, and stochastic analysis. Self-contained and offering complete proofs, this work is accessible to graduate students and researchers with a background in functional analysis or related areas.
Functional Analysis
Author: L. V. Kantorovich
Publisher: Elsevier
ISBN: 1483138259
Category : Mathematics
Languages : en
Pages : 605
Book Description
Functional Analysis, Second Edition is an exposition of the theory of topological vector spaces, partially ordered spaces, and the development of the theory of integral operators and their representations on ideal spaces of measurable functions. Although this edition has deviated substantially from the first edition, it has still retained the overall plan, selection, and arrangement of the topics. The text is primarily devoted to the applications of functional analysis to applied analysis. However, these concepts have been extended and modernized. Some topics of functional analysis connected with applications to mathematical economics and control theory are also included in this edition. The applications of functional analysis are both wide and far-reaching as these are common language for all areas of mathematics involving the concept of continuity. Those who are in the field of mathematics, mechanics, and theoretical physics will find this book a valuable resource.
Publisher: Elsevier
ISBN: 1483138259
Category : Mathematics
Languages : en
Pages : 605
Book Description
Functional Analysis, Second Edition is an exposition of the theory of topological vector spaces, partially ordered spaces, and the development of the theory of integral operators and their representations on ideal spaces of measurable functions. Although this edition has deviated substantially from the first edition, it has still retained the overall plan, selection, and arrangement of the topics. The text is primarily devoted to the applications of functional analysis to applied analysis. However, these concepts have been extended and modernized. Some topics of functional analysis connected with applications to mathematical economics and control theory are also included in this edition. The applications of functional analysis are both wide and far-reaching as these are common language for all areas of mathematics involving the concept of continuity. Those who are in the field of mathematics, mechanics, and theoretical physics will find this book a valuable resource.
Measure, Integral and Probability
Author: Marek Capinski
Publisher: Springer Science & Business Media
ISBN: 1447136314
Category : Mathematics
Languages : en
Pages : 229
Book Description
This very well written and accessible book emphasizes the reasons for studying measure theory, which is the foundation of much of probability. By focusing on measure, many illustrative examples and applications, including a thorough discussion of standard probability distributions and densities, are opened. The book also includes many problems and their fully worked solutions.
Publisher: Springer Science & Business Media
ISBN: 1447136314
Category : Mathematics
Languages : en
Pages : 229
Book Description
This very well written and accessible book emphasizes the reasons for studying measure theory, which is the foundation of much of probability. By focusing on measure, many illustrative examples and applications, including a thorough discussion of standard probability distributions and densities, are opened. The book also includes many problems and their fully worked solutions.