Variational Principles for Second-order Differential Equations

Variational Principles for Second-order Differential Equations PDF Author: J. Grifone
Publisher: World Scientific
ISBN: 9789810237349
Category : Mathematics
Languages : en
Pages : 236

Get Book Here

Book Description
The inverse problem of the calculus of variations was first studied by Helmholtz in 1887 and it is entirely solved for the differential operators, but only a few results are known in the more general case of differential equations. This book looks at second-order differential equations and asks if they can be written as Euler-Lagrangian equations. If the equations are quadratic, the problem reduces to the characterization of the connections which are Levi-Civita for some Riemann metric.To solve the inverse problem, the authors use the formal integrability theory of overdetermined partial differential systems in the Spencer-Quillen-Goldschmidt version. The main theorems of the book furnish a complete illustration of these techniques because all possible situations appear: involutivity, 2-acyclicity, prolongation, computation of Spencer cohomology, computation of the torsion, etc.

Variational Principles for Second-order Differential Equations

Variational Principles for Second-order Differential Equations PDF Author: J. Grifone
Publisher: World Scientific
ISBN: 9789810237349
Category : Mathematics
Languages : en
Pages : 236

Get Book Here

Book Description
The inverse problem of the calculus of variations was first studied by Helmholtz in 1887 and it is entirely solved for the differential operators, but only a few results are known in the more general case of differential equations. This book looks at second-order differential equations and asks if they can be written as Euler-Lagrangian equations. If the equations are quadratic, the problem reduces to the characterization of the connections which are Levi-Civita for some Riemann metric.To solve the inverse problem, the authors use the formal integrability theory of overdetermined partial differential systems in the Spencer-Quillen-Goldschmidt version. The main theorems of the book furnish a complete illustration of these techniques because all possible situations appear: involutivity, 2-acyclicity, prolongation, computation of Spencer cohomology, computation of the torsion, etc.

Variational Principles For Second-order Differential Equations, Application Of The Spencer Theory Of

Variational Principles For Second-order Differential Equations, Application Of The Spencer Theory Of PDF Author: Joseph Grifone
Publisher: World Scientific
ISBN: 9814495360
Category : Mathematics
Languages : en
Pages : 229

Get Book Here

Book Description
The inverse problem of the calculus of variations was first studied by Helmholtz in 1887 and it is entirely solved for the differential operators, but only a few results are known in the more general case of differential equations. This book looks at second-order differential equations and asks if they can be written as Euler-Lagrangian equations. If the equations are quadratic, the problem reduces to the characterization of the connections which are Levi-Civita for some Riemann metric.To solve the inverse problem, the authors use the formal integrability theory of overdetermined partial differential systems in the Spencer-Quillen-Goldschmidt version. The main theorems of the book furnish a complete illustration of these techniques because all possible situations appear: involutivity, 2-acyclicity, prolongation, computation of Spencer cohomology, computation of the torsion, etc.

The Method of Weighted Residuals and Variational Principles

The Method of Weighted Residuals and Variational Principles PDF Author: Bruce A. Finlayson
Publisher: SIAM
ISBN: 1611973236
Category : Mathematics
Languages : en
Pages : 429

Get Book Here

Book Description
This classic book covers the solution of differential equations in science and engineering in such as way as to provide an introduction for novices before progressing toward increasingly more difficult problems. The Method of Weighted Residuals and Variational Principles describes variational principles, including how to find them and how to use them to construct error bounds and create stationary principles. The book also illustrates how to use simple methods to find approximate solutions, shows how to use the finite element method for more complex problems, and provides detailed information on error bounds. Problem sets make this book ideal for self-study or as a course text.

Variational Principles in Classical Mechanics

Variational Principles in Classical Mechanics PDF Author: Douglas Cline
Publisher:
ISBN: 9780998837277
Category :
Languages : en
Pages :

Get Book Here

Book Description
Two dramatically different philosophical approaches to classical mechanics were proposed during the 17th - 18th centuries. Newton developed his vectorial formulation that uses time-dependent differential equations of motion to relate vector observables like force and rate of change of momentum. Euler, Lagrange, Hamilton, and Jacobi, developed powerful alternative variational formulations based on the assumption that nature follows the principle of least action. These variational formulations now play a pivotal role in science and engineering.This book introduces variational principles and their application to classical mechanics. The relative merits of the intuitive Newtonian vectorial formulation, and the more powerful variational formulations are compared. Applications to a wide variety of topics illustrate the intellectual beauty, remarkable power, and broad scope provided by use of variational principles in physics.The second edition adds discussion of the use of variational principles applied to the following topics:(1) Systems subject to initial boundary conditions(2) The hierarchy of related formulations based on action, Lagrangian, Hamiltonian, and equations of motion, to systems that involve symmetries.(3) Non-conservative systems.(4) Variable-mass systems.(5) The General Theory of Relativity.Douglas Cline is a Professor of Physics in the Department of Physics and Astronomy, University of Rochester, Rochester, New York.

Self-dual Partial Differential Systems and Their Variational Principles

Self-dual Partial Differential Systems and Their Variational Principles PDF Author: Nassif Ghoussoub
Publisher: Springer Science & Business Media
ISBN: 0387848967
Category : Mathematics
Languages : en
Pages : 352

Get Book Here

Book Description
This text is intended for a beginning graduate course on convexity methods for PDEs. The generality chosen by the author puts this under the classification of "functional analysis". The book contains new results and plenty of examples and exercises.

Variational and Extremum Principles in Macroscopic Systems

Variational and Extremum Principles in Macroscopic Systems PDF Author: Stanislaw Sieniutycz
Publisher: Elsevier
ISBN: 0080456146
Category : Technology & Engineering
Languages : en
Pages : 810

Get Book Here

Book Description
Recent years have seen a growing trend to derive models of macroscopic phenomena encountered in the fields of engineering, physics, chemistry, ecology, self-organisation theory and econophysics from various variational or extremum principles. Through the link between the integral extremum of a functional and the local extremum of a function (explicit, for example, in the Pontryagin's maximum principle variational and extremum principles are mutually related. Thus it makes sense to consider them within a common context. The main goal of Variational and Extremum Principles in Macroscopic Systems is to collect various mathematical formulations and examples of physical reasoning that involve both basic theoretical aspects and applications of variational and extremum approaches to systems of the macroscopic world. The first part of the book is focused on the theory, whereas the second focuses on applications. The unifying variational approach is used to derive the balance or conservation equations, phenomenological equations linking fluxes and forces, equations of change for processes with coupled transfer of energy and substance, and optimal conditions for energy management. - A unique multidisciplinary synthesis of variational and extremum principles in theory and application - A comprehensive review of current and past achievements in variational formulations for macroscopic processes - Uses Lagrangian and Hamiltonian formalisms as a basis for the exposition of novel approaches to transfer and conversion of thermal, solar and chemical energy

Variational Principles in Dynamics and Quantum Theory

Variational Principles in Dynamics and Quantum Theory PDF Author: Wolfgang Yourgrau
Publisher: Courier Corporation
ISBN: 0486151131
Category : Science
Languages : en
Pages : 222

Get Book Here

Book Description
DIVHistorical, theoretical survey with many insights, much hard-to-find material. Hamilton’s principle, Hamilton-Jacobi equation, etc. /div

Second Order Parabolic Differential Equations

Second Order Parabolic Differential Equations PDF Author: Gary M. Lieberman
Publisher: World Scientific
ISBN: 9789810228835
Category : Mathematics
Languages : en
Pages : 472

Get Book Here

Book Description
Introduction. Maximum principles. Introduction to the theory of weak solutions. Hölder estimates. Existence, uniqueness, and regularity of solutions. Further theory of weak solutions. Strong solutions. Fixed point theorems and their applications. Comparison and maximum principles. Boundary gradient estimates. Global and local gradient bounds. Hölder gradient estimates and existence theorems. The oblique derivative problem for quasilinear parabolic equations. Fully nonlinear equations. Introduction. Monge-Ampère and Hessian equations.

Variational Principles in Physics

Variational Principles in Physics PDF Author: Jean-Louis Basdevant
Publisher: Springer Science & Business Media
ISBN: 0387377484
Category : Science
Languages : en
Pages : 191

Get Book Here

Book Description
Variational principles have proven to be surprisingly fertile. For example, Fermat used variational methods to demonstrate that light follows the fastest route from one point to another, an idea which came to be a cornerstone of geometrical optics. This book explains variational principles and charts their use throughout modern physics. It examines the analytical mechanics of Lagrange and Hamilton, the basic tools of any physicist. The book also offers simple but rich first impressions of Einstein’s General Relativity, Feynman’s Quantum Mechanics, and more that reveal amazing interconnections between various fields of physics.

The Variational Principles of Mechanics

The Variational Principles of Mechanics PDF Author: Cornelius Lanczos
Publisher: Courier Corporation
ISBN: 0486134709
Category : Science
Languages : en
Pages : 466

Get Book Here

Book Description
Philosophic, less formalistic approach to analytical mechanics offers model of clear, scholarly exposition at graduate level with coverage of basics, calculus of variations, principle of virtual work, equations of motion, more.