Variational Methods for Problems from Plasticity Theory and for Generalized Newtonian Fluids

Variational Methods for Problems from Plasticity Theory and for Generalized Newtonian Fluids PDF Author: Martin Fuchs
Publisher: Springer
ISBN: 3540444424
Category : Mathematics
Languages : en
Pages : 276

Get Book Here

Book Description
Variational methods are applied to prove the existence of weak solutions for boundary value problems from the deformation theory of plasticity as well as for the slow, steady state flow of generalized Newtonian fluids including the Bingham and Prandtl-Eyring model. For perfect plasticity the role of the stress tensor is emphasized by studying the dual variational problem in appropriate function spaces. The main results describe the analytic properties of weak solutions, e.g. differentiability of velocity fields and continuity of stresses. The monograph addresses researchers and graduate students interested in applications of variational and PDE methods in the mechanics of solids and fluids.

Variational Methods for Problems from Plasticity Theory and for Generalized Newtonian Fluids

Variational Methods for Problems from Plasticity Theory and for Generalized Newtonian Fluids PDF Author: Martin Fuchs
Publisher: Springer
ISBN: 3540444424
Category : Mathematics
Languages : en
Pages : 276

Get Book Here

Book Description
Variational methods are applied to prove the existence of weak solutions for boundary value problems from the deformation theory of plasticity as well as for the slow, steady state flow of generalized Newtonian fluids including the Bingham and Prandtl-Eyring model. For perfect plasticity the role of the stress tensor is emphasized by studying the dual variational problem in appropriate function spaces. The main results describe the analytic properties of weak solutions, e.g. differentiability of velocity fields and continuity of stresses. The monograph addresses researchers and graduate students interested in applications of variational and PDE methods in the mechanics of solids and fluids.

Lectures on Visco-Plastic Fluid Mechanics

Lectures on Visco-Plastic Fluid Mechanics PDF Author: Guillaume Ovarlez
Publisher: Springer
ISBN: 3319894382
Category : Technology & Engineering
Languages : en
Pages : 265

Get Book Here

Book Description
The book is designed for advanced graduate students as well as postdoctoral researchers across several disciplines (e.g., mathematics, physics and engineering), as it provides them with tools and techniques that are essential in performing research on the flow problems of visco-plastic fluids. The following topics are treated: analysis of classical visco-plastic fluid models mathematical modeling of flows of visco-plastic fluids computing flows of visco-plastic fluids rheology of visco-plastic fluids and visco-plastic suspensions application of visco-plastic fluids in engineering sciences complex flows of visco-plastic fluids.

IUTAM Symposium on Theoretical, Computational and Modelling Aspects of Inelastic Media

IUTAM Symposium on Theoretical, Computational and Modelling Aspects of Inelastic Media PDF Author: B. Daya Reddy
Publisher: Springer Science & Business Media
ISBN: 1402090900
Category : Technology & Engineering
Languages : en
Pages : 388

Get Book Here

Book Description
This work comprises papers based on some of the talks presented at the IUTAM Symposium of the same name, held in Cape Town, January 14-18, 2008. This volume treats cutting-edge issues in modelling, the behaviour of various classes of inelastic media, and associated algorithms for carrying out computational simulations. A key feature of the contributions are works directed at modelling behaviour at the meso and micro-scales, and at bridging the micro-macro scales.

From Hahn-Banach to Monotonicity

From Hahn-Banach to Monotonicity PDF Author: Stephen Simons
Publisher: Springer Science & Business Media
ISBN: 1402069189
Category : Mathematics
Languages : en
Pages : 251

Get Book Here

Book Description
This new edition of LNM 1693 aims to reduce questions on monotone multifunctions to questions on convex functions. However, rather than using a "big convexification" of the graph of the multifunction and the "minimax technique" for proving the existence of linear functionals satisfying certain conditions, the Fitzpatrick function is used. The journey begins with the Hahn-Banach theorem and culminates in a survey of current results on monotone multifunctions on a Banach space.

Proceedings of the St. Petersburg Mathematical Society, Volume XV

Proceedings of the St. Petersburg Mathematical Society, Volume XV PDF Author: Darya Apushkinskaya
Publisher: American Mathematical Society
ISBN: 1470415518
Category : Mathematics
Languages : en
Pages : 282

Get Book Here

Book Description
This book presents the proceedings of the international workshop, "Advances in Mathematical Analysis of Partial Differential Equations" held at the Institut Mittag-Leffler, Stockholm, Sweden, July 9-13, 2012, dedicated to the memory of the outstanding Russian mathematician Olga A. Ladyzhenskaya. The volume contains papers that engage a wide set of modern topics in the theory of linear and nonlinear partial differential equations and applications, including variational and free boundary problems, mathematical problems of hydrodynamics, and magneto-geostrophic equations.

Mathematical Foundation of Turbulent Viscous Flows

Mathematical Foundation of Turbulent Viscous Flows PDF Author: Peter Constantin
Publisher: Springer
ISBN: 3540324542
Category : Mathematics
Languages : en
Pages : 265

Get Book Here

Book Description
Constantin presents the Euler equations of ideal incompressible fluids and the blow-up problem for the Navier-Stokes equations of viscous fluids, describing major mathematical questions of turbulence theory. These are connected to the Caffarelli-Kohn-Nirenberg theory of singularities for the incompressible Navier-Stokes equations, explained in Gallavotti's lectures. Kazhikhov introduces the theory of strong approximation of weak limits via the method of averaging, applied to Navier-Stokes equations. Y. Meyer focuses on nonlinear evolution equations and related unexpected cancellation properties, either imposed on the initial condition, or satisfied by the solution itself, localized in space or in time variable. Ukai discusses the asymptotic analysis theory of fluid equations, the Cauchy-Kovalevskaya technique for the Boltzmann-Grad limit of the Newtonian equation, the multi-scale analysis, giving compressible and incompressible limits of the Boltzmann equation, and the analysis of their initial layers.

Recent Developments of Mathematical Fluid Mechanics

Recent Developments of Mathematical Fluid Mechanics PDF Author: Herbert Amann
Publisher: Birkhäuser
ISBN: 3034809395
Category : Mathematics
Languages : en
Pages : 478

Get Book Here

Book Description
The aim of this proceeding is addressed to present recent developments of the mathematical research on the Navier-Stokes equations, the Euler equations and other related equations. In particular, we are interested in such problems as: 1) existence, uniqueness and regularity of weak solutions2) stability and its asymptotic behavior of the rest motion and the steady state3) singularity and blow-up of weak and strong solutions4) vorticity and energy conservation5) fluid motions around the rotating axis or outside of the rotating body6) free boundary problems7) maximal regularity theorem and other abstract theorems for mathematical fluid mechanics.

Lectures on Amenability

Lectures on Amenability PDF Author: Volker Runde
Publisher: Springer
ISBN: 3540455604
Category : Mathematics
Languages : en
Pages : 302

Get Book Here

Book Description
The notion of amenability has its origins in the beginnings of modern measure theory: Does a finitely additive set function exist which is invariant under a certain group action? Since the 1940s, amenability has become an important concept in abstract harmonic analysis (or rather, more generally, in the theory of semitopological semigroups). In 1972, B.E. Johnson showed that the amenability of a locally compact group G can be characterized in terms of the Hochschild cohomology of its group algebra L^1(G): this initiated the theory of amenable Banach algebras. Since then, amenability has penetrated other branches of mathematics, such as von Neumann algebras, operator spaces, and even differential geometry. Lectures on Amenability introduces second year graduate students to this fascinating area of modern mathematics and leads them to a level from where they can go on to read original papers on the subject. Numerous exercises are interspersed in the text.

Conformal Geometry of Surfaces in S4 and Quaternions

Conformal Geometry of Surfaces in S4 and Quaternions PDF Author: Francis E. Burstall
Publisher: Springer
ISBN: 3540453016
Category : Mathematics
Languages : en
Pages : 98

Get Book Here

Book Description
The conformal geometry of surfaces recently developed by the authors leads to a unified understanding of algebraic curve theory and the geometry of surfaces on the basis of a quaternionic-valued function theory. The book offers an elementary introduction to the subject but takes the reader to rather advanced topics. Willmore surfaces in the foursphere, their Bäcklund and Darboux transforms are covered, and a new proof of the classification of Willmore spheres is given.

Pointwise Convergence of Fourier Series

Pointwise Convergence of Fourier Series PDF Author: Juan Arias de Reyna
Publisher: Springer
ISBN: 3540458220
Category : Mathematics
Languages : en
Pages : 180

Get Book Here

Book Description
This book contains a detailed exposition of Carleson-Hunt theorem following the proof of Carleson: to this day this is the only one giving better bounds. It points out the motivation of every step in the proof. Thus the Carleson-Hunt theorem becomes accessible to any analyst.The book also contains the first detailed exposition of the fine results of Hunt, Sjölin, Soria, etc on the convergence of Fourier Series. Its final chapters present original material. With both Fefferman's proof and the recent one of Lacey and Thiele in print, it becomes more important than ever to understand and compare these two related proofs with that of Carleson and Hunt. These alternative proofs do not yield all the results of the Carleson-Hunt proof. The intention of this monograph is to make Carleson's proof accessible to a wider audience, and to explain its consequences for the pointwise convergence of Fourier series for functions in spaces near $äcal Lü^1$, filling a well-known gap in the literature.