Vapor-Liquid Interfaces, Bubbles and Droplets

Vapor-Liquid Interfaces, Bubbles and Droplets PDF Author: Shigeo Fujikawa
Publisher: Springer Science & Business Media
ISBN: 3642180388
Category : Technology & Engineering
Languages : en
Pages : 235

Get Book Here

Book Description
Physically correct boundary conditions on vapor-liquid interfaces are essential in order to make an analysis of flows of a liquid including bubbles or of a gas including droplets. Suitable boundary conditions do not exist at the present time. This book is concerned with the kinetic boundary condition for both the plane and curved vapor-liquid interfaces, and the fluid dynamics boundary condition for Navier-Stokes(fluid dynamics) equations. The kinetic boundary condition is formulated on the basis of molecular dynamics simulations and the fluid dynamics boundary condition is derived by a perturbation analysis of Gaussian-BGK Boltzmann equation applicable to polyatomic gases. The fluid dynamics boundary condition is applied to actual flow problems of bubbles in a liquid and droplets in a gas.

Vapor-Liquid Interfaces, Bubbles and Droplets

Vapor-Liquid Interfaces, Bubbles and Droplets PDF Author: Shigeo Fujikawa
Publisher: Springer Science & Business Media
ISBN: 3642180388
Category : Technology & Engineering
Languages : en
Pages : 235

Get Book Here

Book Description
Physically correct boundary conditions on vapor-liquid interfaces are essential in order to make an analysis of flows of a liquid including bubbles or of a gas including droplets. Suitable boundary conditions do not exist at the present time. This book is concerned with the kinetic boundary condition for both the plane and curved vapor-liquid interfaces, and the fluid dynamics boundary condition for Navier-Stokes(fluid dynamics) equations. The kinetic boundary condition is formulated on the basis of molecular dynamics simulations and the fluid dynamics boundary condition is derived by a perturbation analysis of Gaussian-BGK Boltzmann equation applicable to polyatomic gases. The fluid dynamics boundary condition is applied to actual flow problems of bubbles in a liquid and droplets in a gas.

Bubble and Drop Interfaces

Bubble and Drop Interfaces PDF Author: Miller
Publisher: VSP
ISBN: 9004174958
Category : Science
Languages : en
Pages : 567

Get Book Here

Book Description
The book aims at describing the most important experimental methods for characterizing liquid interfaces, such as drop profile analysis, bubble pressure and drop volume tensiometry, capillary pressure technique, and oscillating drops and bubbles.

Bubbles, Drops, and Particles

Bubbles, Drops, and Particles PDF Author: R. Clift
Publisher: Courier Corporation
ISBN: 0486317749
Category : Science
Languages : en
Pages : 402

Get Book Here

Book Description
This volume offers a unified treatment and critical review of the literature related to the fluid dynamics, heat transfer, and mass transfer of single bubbles, drops, and particles. 1978 edition.

Shape of Fluid Drops at Fluid-liquid Interfaces and Permeability of Soap Films to Gases

Shape of Fluid Drops at Fluid-liquid Interfaces and Permeability of Soap Films to Gases PDF Author: Henricus Mattheus Princen
Publisher:
ISBN:
Category : Drops
Languages : en
Pages : 114

Get Book Here

Book Description


Drops and Bubbles in Interfacial Research

Drops and Bubbles in Interfacial Research PDF Author: D. Mobius
Publisher: Elsevier
ISBN: 0080530524
Category : Science
Languages : en
Pages : 729

Get Book Here

Book Description
The shape of drops and bubbles is the centre of interest for many interfacial scientists. This book describes the most recent accomplishments to make use of drops and bubbles in fundamental research and application. After a general introduction into the mechanics of liquid menisci, chapters are dedicated to methods based on drops or bubbles. The chapters about the three main drop experiments provide the theoretical basis, a description of experimental set-ups, specific advantages and disadvantages, correction and calibration problems, experimental examples and their interpretation: pendent and sessile drop, drop volume, and spinning drop technique. The chapter about capillary pressure methods summarises different techniques and gives examples of applications, for instance measurements under microgravity. The maximum bubble pressure technique as a particular capillary pressure method is described, with emphasis on the most recent developments which made this technique applicable to extremely short adsorption times, down to the range of milliseconds and less. Problems connected with aerodynamics and hydrodynamics are discussed and used to show the limits of this widely used standard method. The oscillating bubble technique provides information not available by other techniques, for example about the dilational rheology of adsorption layers and relaxation processes at the interface. The description of rising bubbles in surfactant solutions will contain the hydrodynamic basis as well as the theoretical description of the effect of interfacial layers on the movement of bubbles. Besides the theoretical basis experimental data, such as water purification, flotation processes etc. and the relevance for practical applications will be presented. The chapter about lung alveols demonstrates how important bubbles built by biological membranes are in everyday life. The relevance for medicine and biology as well as model studies is discussed. An important example for the application of drops is metallurgy, where the surface tension of metals and alloys is an important parameter for many applications. The chapters on drop shape analysis by using fibre technique and on force measurements between emulsion droplets are of much practical relevance. Lists of references and symbols are given separately at the end of each chapter while a common subject index is given at the end of the book.

Dynamics and Statics of Liquid-liquid and Gas-liquid Interfaces on Non-uniform Substrates at the Micron and Sub-micron Scales

Dynamics and Statics of Liquid-liquid and Gas-liquid Interfaces on Non-uniform Substrates at the Micron and Sub-micron Scales PDF Author: Michael M. Norton
Publisher:
ISBN:
Category :
Languages : en
Pages : 314

Get Book Here

Book Description
Droplets and bubbles are ubiquitous motifs found in natural and industrial processes. In the absence of significant external forces, liquid-liquid and gas-liquid interfaces form constant mean curvature surfaces that locally minimize the free energy of a given system subject to constraints. However, even for sub-micron bubbles and droplets free of hydrodynamic and hydrostatic stresses (small Capillary, Weber, and Bond numbers), non-equilibrium at the contact line of sessile bubbles and droplets can influence geometries and dynamics. First, the wetting of micron-sized ellipsoidal particles was considered. In the space of axially symmetric interfaces, it is found that multiple constant mean curvature surfaces can satisfy volume and contact angle constraints. Partial encapsulation may be preferred even when the droplet's volume is sufficient to fully engulf the particle. The co-existence of multiple equilibrium states suggests possible hysteretic encapsulation behavior. Secondly, motivated by electron microscopy observations of sub-micron bubbles in a liquid cell, a small mobile and growing bubble confined between two weakly diverging plates is considered theoretically. Scaling analysis suggests that observed bubbles move by continuously wetting and de-wetting the substrates onto which they are adhered. 2D and 3D models are constructed incorporating the Blake-Haynes mechanism, which relates the dynamic contact angle to contact line velocity; partial pinning of the contact line is also considered. In 2D, the system is fully described by a set of non-linear ordinary differential equations that can be readily solved. In 3D, the non-linear PDE system and constraints were solved using a pseudo-spectral method. Both 2D and 3D models predict that in order for a doubly confined bubble to grow in a super-saturated solution it must first increase its curvature; this is in contrast to a free-floating bubble whose curvature always decreases with the addition of mass/volume. Since the surface concentration is proportional to the internal pressure of the bubble, this geometric change temporarily regulates the growth of the bubble. The model predicts growth rates like those observed experimentally that are several orders of magnitude lower than predictions made by classical mass transfer driven growth theory developed by Epstein and Plesset.

Droplets and Sprays

Droplets and Sprays PDF Author: Sergei Sazhin
Publisher: Springer
ISBN: 1447163869
Category : Technology & Engineering
Languages : en
Pages : 345

Get Book Here

Book Description
Providing a clear and systematic description of droplets and spray dynamic models, this book maximises reader insight into the underlying physics of the processes involved, outlines the development of new physical and mathematical models and broadens understanding of interactions between the complex physical processes which take place in sprays. Complementing approaches based on the direct application of computational fluid dynamics (CFD), Droplets and Sprays treats both theoretical and practical aspects of internal combustion engine process such as the direct injection of liquid fuel, subcritical heating and evaporation. Including case studies that illustrate the approaches relevance to automotive applications, it is also anticipated that the described models can find use in other areas such as in medicine and environmental science.

Chemistry of Functional Materials Surfaces and Interfaces

Chemistry of Functional Materials Surfaces and Interfaces PDF Author: Andrei Honciuc
Publisher: Elsevier
ISBN: 0128231939
Category : Science
Languages : en
Pages : 282

Get Book Here

Book Description
Chemistry of Functional Materials Surfaces and Interfaces: Fundamentals and Applications gives a descriptive account of interfacial phenomena step-by-step, from simple to complex, to provide readers with a strong foundation of knowledge in interfacial materials chemistry. Many case studies are provided to give real-world examples of problems and their solutions, allowing readers to make the connection between fundamental understanding and applications. Emerging applications in nanomaterials and nanotechnology are also discussed. Throughout the book, the author explains the common interface and surface equations, models, methods, and applications in the creation of functional materials. The goal of Chemistry of Functional Materials Surfaces and Interfaces is to provide readers with the basic understanding of the common tools of surface and interface chemistry for application in materials science and nanotechnology. This book is suitable for researchers and practitioners in the disciplines of materials science and engineering and surface and interface chemistry. Includes numerous real-world examples and case studies throughout Addresses emerging applications of interfacial materials chemistry in nanomaterials and nanotechnology Provides the foundational concepts of surface and interfacial science with models, equation, and methods

Computational Techniques for Multiphase Flows

Computational Techniques for Multiphase Flows PDF Author: Guan Heng Yeoh
Publisher: Butterworth-Heinemann
ISBN: 0081024541
Category : Technology & Engineering
Languages : en
Pages : 640

Get Book Here

Book Description
Computational Techniques for Multiphase Flows, Second Edition, provides the latest research and theories covering the most popular multiphase flows The book begins with an overview of the state-of-the-art techniques for multiple numerical methods in handling multiphase flow, compares them, and finally highlights their strengths and weaknesses. In addition, it covers more straightforward, conventional theories and governing equations in early chapters, moving on to the more modern and complex computational models and tools later in the book. It is therefore accessible to those who may be new to the subject while also featuring topics of interest to the more experienced researcher. Mixed or multiphase flows of solid/liquid or solid/gas are commonly found in many industrial fields, and their behavior is complex and difficult to predict in many cases. The use of computational fluid dynamics (CFD) has emerged as a powerful tool for understanding fluid mechanics in multiphase reactors, which are widely used in the chemical, petroleum, mining, food, automotive, energy, aerospace and pharmaceutical industries. This revised edition is an ideal reference for scientists, MSc students and chemical and mechanical engineers in these areas. Includes updated chapters in addition to a brand-new section on granular flows. Features novel solution methods for multiphase flow, along with recent case studies. Explains how and when to use the featured technique and how to interpret the results and apply them to improving applications.

Physical Chemistry of Gas-Liquid Interfaces

Physical Chemistry of Gas-Liquid Interfaces PDF Author: Jennifer A. Faust
Publisher: Elsevier
ISBN: 0128136421
Category : Science
Languages : en
Pages : 490

Get Book Here

Book Description
Physical Chemistry of Gas-Liquid Interfaces, the first volume in the Developments in Physical & Theoretical Chemistry series, addresses the physical chemistry of gas transport and reactions across liquid surfaces. Gas–liquid interfaces are all around us, especially within atmospheric systems such as sea spry aerosols, cloud droplets, and the surface of the ocean. Because the reaction environment at liquid surfaces is completely unlike bulk gas or bulk liquid, chemists must readjust their conceptual framework when entering this field. This book provides the necessary background in thermodynamics and computational and experimental techniques for scientists to obtain a thorough understanding of the physical chemistry of liquid surfaces in complex, real-world environments. Provides an interdisciplinary view of the chemical dynamics of liquid surfaces, making the content of specific use to physical chemists and atmospheric scientists Features 100 figures and illustrations to underscore key concepts and aid in retention for young scientists in industry and graduate students in the classroom Helps scientists who are transitioning to this field by offering the appropriate thermodynamic background and surveying the current state of research