Author: Joe Ferrari
Publisher: Elsevier
ISBN: 0128198737
Category : Business & Economics
Languages : en
Pages : 258
Book Description
Electric Utility Resource Planning: Past, Present and Future covers the balance of renewable costs, energy storage, and flexible backstop mechanisms needed in electric utility resource planning. In addition, it covers the optimization of planning methodologies and market design. The book argues that net load, ramping and volatility concerns associated with renewables call into question the validity of almost a century of planning approaches. Finally, it suggests that accounting for flexibility helps optimize the efficiency of the entire fleet of assets, minimizing costs and CO2 generation simultaneously, concluding that a flexible, independent backstop mechanism is needed, regardless of renewables or storage. Case studies provide a mix of hypothetical "what if" scenarios and analyses of real-life utility portfolios drawn from international examples. Examines how resource planners and policy specialists can plan to incorporate renewable generation technologies, thus uniting considerations of technology, methodology, business and policy Focuses on the reality of long-term decision-making and planning processes in working utilities Reviews novel approaches towards resource planning that yield lower costs and CO2 Emphasizes the need for flexible backstop mechanisms to maintain reliability
Electric Utility Resource Planning
Author: Joe Ferrari
Publisher: Elsevier
ISBN: 0128198737
Category : Business & Economics
Languages : en
Pages : 258
Book Description
Electric Utility Resource Planning: Past, Present and Future covers the balance of renewable costs, energy storage, and flexible backstop mechanisms needed in electric utility resource planning. In addition, it covers the optimization of planning methodologies and market design. The book argues that net load, ramping and volatility concerns associated with renewables call into question the validity of almost a century of planning approaches. Finally, it suggests that accounting for flexibility helps optimize the efficiency of the entire fleet of assets, minimizing costs and CO2 generation simultaneously, concluding that a flexible, independent backstop mechanism is needed, regardless of renewables or storage. Case studies provide a mix of hypothetical "what if" scenarios and analyses of real-life utility portfolios drawn from international examples. Examines how resource planners and policy specialists can plan to incorporate renewable generation technologies, thus uniting considerations of technology, methodology, business and policy Focuses on the reality of long-term decision-making and planning processes in working utilities Reviews novel approaches towards resource planning that yield lower costs and CO2 Emphasizes the need for flexible backstop mechanisms to maintain reliability
Publisher: Elsevier
ISBN: 0128198737
Category : Business & Economics
Languages : en
Pages : 258
Book Description
Electric Utility Resource Planning: Past, Present and Future covers the balance of renewable costs, energy storage, and flexible backstop mechanisms needed in electric utility resource planning. In addition, it covers the optimization of planning methodologies and market design. The book argues that net load, ramping and volatility concerns associated with renewables call into question the validity of almost a century of planning approaches. Finally, it suggests that accounting for flexibility helps optimize the efficiency of the entire fleet of assets, minimizing costs and CO2 generation simultaneously, concluding that a flexible, independent backstop mechanism is needed, regardless of renewables or storage. Case studies provide a mix of hypothetical "what if" scenarios and analyses of real-life utility portfolios drawn from international examples. Examines how resource planners and policy specialists can plan to incorporate renewable generation technologies, thus uniting considerations of technology, methodology, business and policy Focuses on the reality of long-term decision-making and planning processes in working utilities Reviews novel approaches towards resource planning that yield lower costs and CO2 Emphasizes the need for flexible backstop mechanisms to maintain reliability
Electric Utility Resource Planning
Author: Steven Sim
Publisher: CRC Press
ISBN: 1439884072
Category : Science
Languages : en
Pages : 337
Book Description
Most people—including many legislators, regulators, and other decision makers in the electric utility industry—have misconceptions about how electric utilities really "work" and plan for the future. This lack of understanding can lead to poorly informed decisions and policies that directly affect the choices utilities must make. Using easy-to-understand text and examples, Electric Utility Resource Planning: Economics, Reliability, and Decision-Making clarifies how utilities operate their systems and prepare for the future. This explanation will show readers that both expected and counterintuitive results can occur (i.e., conservation might result in higher air emissions, or lowering costs could lead to higher electric rates). Taking readers step by step through this process, the book (in the following order): "Creates" a hypothetical utility Explains how and why a utility operates its system of generating units Discusses the planning methods that a utility would (or should) use Guides readers through each stage of a planning analysis for the hypothetical utility, examining various resource options (conservation, new power plants, and solar) In addition, the author introduces four Fundamental Principles of Resource Planning that should guide utilities. He also offers opinions on how certain trends in utility regulation and legislation can hinder utility planners’ efforts to identify and select the best resources for the utility’s customers. With this book, author Dr. Steven Sim applies his experience and insights from more than two decades of resource planning for Florida Power and Light (FPL). As one of the largest utilities in the United States, FPL has faced a multitude of resource planning challenges, and Dr. Sim has performed and supervised thousands of analyses designed to meet these obstacles. He has also served as an FPL witness in regulatory hearings on a wide variety of topics, ranging from the economic implications of nuclear, conservation, coal, gas, and other resource options, to the non-economic impacts (air emissions, fuel usage, system reliability, etc.) they present.
Publisher: CRC Press
ISBN: 1439884072
Category : Science
Languages : en
Pages : 337
Book Description
Most people—including many legislators, regulators, and other decision makers in the electric utility industry—have misconceptions about how electric utilities really "work" and plan for the future. This lack of understanding can lead to poorly informed decisions and policies that directly affect the choices utilities must make. Using easy-to-understand text and examples, Electric Utility Resource Planning: Economics, Reliability, and Decision-Making clarifies how utilities operate their systems and prepare for the future. This explanation will show readers that both expected and counterintuitive results can occur (i.e., conservation might result in higher air emissions, or lowering costs could lead to higher electric rates). Taking readers step by step through this process, the book (in the following order): "Creates" a hypothetical utility Explains how and why a utility operates its system of generating units Discusses the planning methods that a utility would (or should) use Guides readers through each stage of a planning analysis for the hypothetical utility, examining various resource options (conservation, new power plants, and solar) In addition, the author introduces four Fundamental Principles of Resource Planning that should guide utilities. He also offers opinions on how certain trends in utility regulation and legislation can hinder utility planners’ efforts to identify and select the best resources for the utility’s customers. With this book, author Dr. Steven Sim applies his experience and insights from more than two decades of resource planning for Florida Power and Light (FPL). As one of the largest utilities in the United States, FPL has faced a multitude of resource planning challenges, and Dr. Sim has performed and supervised thousands of analyses designed to meet these obstacles. He has also served as an FPL witness in regulatory hearings on a wide variety of topics, ranging from the economic implications of nuclear, conservation, coal, gas, and other resource options, to the non-economic impacts (air emissions, fuel usage, system reliability, etc.) they present.
Tools and for Methods for Integrated Resource Planning
Author: Joel N. Swisher
Publisher:
ISBN: 9788755023321
Category : Electric power production
Languages : en
Pages : 259
Book Description
Publisher:
ISBN: 9788755023321
Category : Electric power production
Languages : en
Pages : 259
Book Description
Energy Vision 2020 Integrated Resource Plan
Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 638
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 638
Book Description
Integrated Electricity Resource Planning
Author: A. de Almeida
Publisher: Springer Science & Business Media
ISBN: 9401110549
Category : Technology & Engineering
Languages : en
Pages : 531
Book Description
Since the mid-seventies, electric utilities were faced with escalating construction costs, growing environmental plus siting constraints and increasing uncertainty in demand forecasting. To cope with the increasing demand for energy services, utilities can either invest in supply-side options (new generation, transmission and distribution facilities) or in demand-side options. Demand-side options include, policies, programmes, innovative pricing schemes and high-efficiency end-use equipment (equipment providing the same or better level of services but using less energy or peak power). Recent experience in both North America and Europe show that demand-side options are usually cheaper and less damaging from the environmental point of view, and also their potential can be tapped in a shorter term than other supply-side options. This workshop was directed at the discussion and analysis of cost-effective methodologies to achieve the supply of electric energy services at minimum cost and minimum environmental impact. The programme included new developments in power planning models which can integrate both supply-side and demand-side actions. Quantitative assessments of the environmental impact of different supply-demand strategies were analyzed. Planning models which deal with uncertainty and use multicriteria approaches were presented. Case studies and experiments with, innovative concepts carried out by utilities in several countries were discussed. Load modelling and evaluation of demad-side programmes was analyzed. Additionally, the potential for electricity savings in the industrial, commercial and residential sectors was presented. New research directions covering planning models, programmes and end-use technologies were identified.
Publisher: Springer Science & Business Media
ISBN: 9401110549
Category : Technology & Engineering
Languages : en
Pages : 531
Book Description
Since the mid-seventies, electric utilities were faced with escalating construction costs, growing environmental plus siting constraints and increasing uncertainty in demand forecasting. To cope with the increasing demand for energy services, utilities can either invest in supply-side options (new generation, transmission and distribution facilities) or in demand-side options. Demand-side options include, policies, programmes, innovative pricing schemes and high-efficiency end-use equipment (equipment providing the same or better level of services but using less energy or peak power). Recent experience in both North America and Europe show that demand-side options are usually cheaper and less damaging from the environmental point of view, and also their potential can be tapped in a shorter term than other supply-side options. This workshop was directed at the discussion and analysis of cost-effective methodologies to achieve the supply of electric energy services at minimum cost and minimum environmental impact. The programme included new developments in power planning models which can integrate both supply-side and demand-side actions. Quantitative assessments of the environmental impact of different supply-demand strategies were analyzed. Planning models which deal with uncertainty and use multicriteria approaches were presented. Case studies and experiments with, innovative concepts carried out by utilities in several countries were discussed. Load modelling and evaluation of demad-side programmes was analyzed. Additionally, the potential for electricity savings in the industrial, commercial and residential sectors was presented. New research directions covering planning models, programmes and end-use technologies were identified.
Future of Utilities - Utilities of the Future
Author: Fereidoon Sioshansi
Publisher: Academic Press
ISBN: 0128043202
Category : Business & Economics
Languages : en
Pages : 494
Book Description
Future of Utilities - Utilities of the Future: How technological innovations in distributed generation will reshape the electric power sector relates the latest information on the electric power sector its rapid transformation, particularly on the distribution network and customer side. Trends like the rapid rise of self-generation and distributed generation, microgrids, demand response, the dissemination of electric vehicles and zero-net energy buildings that promise to turn many consumers into prosumers are discussed. The book brings together authors from industry and academic backgrounds to present their original, cutting-edge and thought-provoking ideas on the challenges currently faced by electric utilities around the globe, the opportunities they present, and what the future might hold for both traditional players and new entrants to the sector. The book's first part lays out the present scenario, with concepts such as an integrated grid, microgrids, self-generation, customer-centric service, and pricing, while the second part focuses on how innovation, policy, regulation, and pricing models may come together to form a new electrical sector, exploring the reconfiguring of the current institutions, new rates design in light of changes to retail electricity markets and energy efficiency, and the cost and benefits of integration of distributed or intermittent generation, including coupling local renewable energy generation with electric vehicle fleets. The final section projects the future function and role of existing electrical utilities and newcomers to this sector, looking at new pathways for business and pricing models, consumer relations, technology, and innovation. - Contains discussions that help readers understand the underlying causes and drivers of change in the electrical sector, and what these changes mean in financial, operational, and regulatory terms - Provides thought-provoking ideas on the challenges currently faced by electric utilities around the globe, the opportunities they present, and what the future might hold for both traditional players and new entrants to the sector - Helps readers anticipate what developments are likely to define the function and role of the utility of the future
Publisher: Academic Press
ISBN: 0128043202
Category : Business & Economics
Languages : en
Pages : 494
Book Description
Future of Utilities - Utilities of the Future: How technological innovations in distributed generation will reshape the electric power sector relates the latest information on the electric power sector its rapid transformation, particularly on the distribution network and customer side. Trends like the rapid rise of self-generation and distributed generation, microgrids, demand response, the dissemination of electric vehicles and zero-net energy buildings that promise to turn many consumers into prosumers are discussed. The book brings together authors from industry and academic backgrounds to present their original, cutting-edge and thought-provoking ideas on the challenges currently faced by electric utilities around the globe, the opportunities they present, and what the future might hold for both traditional players and new entrants to the sector. The book's first part lays out the present scenario, with concepts such as an integrated grid, microgrids, self-generation, customer-centric service, and pricing, while the second part focuses on how innovation, policy, regulation, and pricing models may come together to form a new electrical sector, exploring the reconfiguring of the current institutions, new rates design in light of changes to retail electricity markets and energy efficiency, and the cost and benefits of integration of distributed or intermittent generation, including coupling local renewable energy generation with electric vehicle fleets. The final section projects the future function and role of existing electrical utilities and newcomers to this sector, looking at new pathways for business and pricing models, consumer relations, technology, and innovation. - Contains discussions that help readers understand the underlying causes and drivers of change in the electrical sector, and what these changes mean in financial, operational, and regulatory terms - Provides thought-provoking ideas on the challenges currently faced by electric utilities around the globe, the opportunities they present, and what the future might hold for both traditional players and new entrants to the sector - Helps readers anticipate what developments are likely to define the function and role of the utility of the future
Integrated Resource Planning for Water Utilities
Author: Janice A. Beecher
Publisher:
ISBN:
Category : Integrated water development
Languages : en
Pages : 328
Book Description
Publisher:
ISBN:
Category : Integrated water development
Languages : en
Pages : 328
Book Description
Reliability Assessment of Large Electric Power Systems
Author: Roy Billinton
Publisher: Springer Science & Business Media
ISBN: 1461316898
Category : Technology & Engineering
Languages : en
Pages : 306
Book Description
We are very pleased to be asked to co-author this book for a variety of reasons, one of which was that it gave us further opportunity to work together. The scope proposed was very wide with the only significant proviso being that the book should be in a mongraph-style and not a teaching text. This require ment has given us the opportunity to compile a wide range of relevant material relating to present-day knowledge and application in power system reliability. As many readers will be aware, we have collaborated in many ways over a relatively long period and have co-authored two other books on reliability evaluation. Both of these previous books were structured as teaching texts. This present book is not a discourse on "how to do reliability evaluation" but a discussion on "why it should be done and what can be done and achieved" and as such does not replace or conflict with the previous books. The three books are complementary and each enhances the others. The material contained in this book is not specifically original since it is based on information which we have published in other forms either jointly or as co authors with various other people, particularly our many research students. We sincerely acknowledge the important contributions made by all these students and colleagues. There are too many to mention individually in this preface but their names appear frequently in the references at the end of each chapter.
Publisher: Springer Science & Business Media
ISBN: 1461316898
Category : Technology & Engineering
Languages : en
Pages : 306
Book Description
We are very pleased to be asked to co-author this book for a variety of reasons, one of which was that it gave us further opportunity to work together. The scope proposed was very wide with the only significant proviso being that the book should be in a mongraph-style and not a teaching text. This require ment has given us the opportunity to compile a wide range of relevant material relating to present-day knowledge and application in power system reliability. As many readers will be aware, we have collaborated in many ways over a relatively long period and have co-authored two other books on reliability evaluation. Both of these previous books were structured as teaching texts. This present book is not a discourse on "how to do reliability evaluation" but a discussion on "why it should be done and what can be done and achieved" and as such does not replace or conflict with the previous books. The three books are complementary and each enhances the others. The material contained in this book is not specifically original since it is based on information which we have published in other forms either jointly or as co authors with various other people, particularly our many research students. We sincerely acknowledge the important contributions made by all these students and colleagues. There are too many to mention individually in this preface but their names appear frequently in the references at the end of each chapter.
The Power of Change
Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309371422
Category : Science
Languages : en
Pages : 341
Book Description
Electricity, supplied reliably and affordably, is foundational to the U.S. economy and is utterly indispensable to modern society. However, emissions resulting from many forms of electricity generation create environmental risks that could have significant negative economic, security, and human health consequences. Large-scale installation of cleaner power generation has been generally hampered because greener technologies are more expensive than the technologies that currently produce most of our power. Rather than trade affordability and reliability for low emissions, is there a way to balance all three? The Power of Change: Innovation for Development and Deployment of Increasingly Clean Energy Technologies considers how to speed up innovations that would dramatically improve the performance and lower the cost of currently available technologies while also developing new advanced cleaner energy technologies. According to this report, there is an opportunity for the United States to continue to lead in the pursuit of increasingly clean, more efficient electricity through innovation in advanced technologies. The Power of Change: Innovation for Development and Deployment of Increasingly Clean Energy Technologies makes the case that America's advantagesâ€"world-class universities and national laboratories, a vibrant private sector, and innovative states, cities, and regions that are free to experiment with a variety of public policy approachesâ€"position the United States to create and lead a new clean energy revolution. This study focuses on five paths to accelerate the market adoption of increasing clean energy and efficiency technologies: (1) expanding the portfolio of cleaner energy technology options; (2) leveraging the advantages of energy efficiency; (3) facilitating the development of increasing clean technologies, including renewables, nuclear, and cleaner fossil; (4) improving the existing technologies, systems, and infrastructure; and (5) leveling the playing field for cleaner energy technologies. The Power of Change: Innovation for Development and Deployment of Increasingly Clean Energy Technologies is a call for leadership to transform the United States energy sector in order to both mitigate the risks of greenhouse gas and other pollutants and to spur future economic growth. This study's focus on science, technology, and economic policy makes it a valuable resource to guide support that produces innovation to meet energy challenges now and for the future.
Publisher: National Academies Press
ISBN: 0309371422
Category : Science
Languages : en
Pages : 341
Book Description
Electricity, supplied reliably and affordably, is foundational to the U.S. economy and is utterly indispensable to modern society. However, emissions resulting from many forms of electricity generation create environmental risks that could have significant negative economic, security, and human health consequences. Large-scale installation of cleaner power generation has been generally hampered because greener technologies are more expensive than the technologies that currently produce most of our power. Rather than trade affordability and reliability for low emissions, is there a way to balance all three? The Power of Change: Innovation for Development and Deployment of Increasingly Clean Energy Technologies considers how to speed up innovations that would dramatically improve the performance and lower the cost of currently available technologies while also developing new advanced cleaner energy technologies. According to this report, there is an opportunity for the United States to continue to lead in the pursuit of increasingly clean, more efficient electricity through innovation in advanced technologies. The Power of Change: Innovation for Development and Deployment of Increasingly Clean Energy Technologies makes the case that America's advantagesâ€"world-class universities and national laboratories, a vibrant private sector, and innovative states, cities, and regions that are free to experiment with a variety of public policy approachesâ€"position the United States to create and lead a new clean energy revolution. This study focuses on five paths to accelerate the market adoption of increasing clean energy and efficiency technologies: (1) expanding the portfolio of cleaner energy technology options; (2) leveraging the advantages of energy efficiency; (3) facilitating the development of increasing clean technologies, including renewables, nuclear, and cleaner fossil; (4) improving the existing technologies, systems, and infrastructure; and (5) leveling the playing field for cleaner energy technologies. The Power of Change: Innovation for Development and Deployment of Increasingly Clean Energy Technologies is a call for leadership to transform the United States energy sector in order to both mitigate the risks of greenhouse gas and other pollutants and to spur future economic growth. This study's focus on science, technology, and economic policy makes it a valuable resource to guide support that produces innovation to meet energy challenges now and for the future.
Electric Utility Resource Planning
Author: Steven Sim
Publisher: CRC Press
ISBN: 100095949X
Category : Science
Languages : en
Pages : 430
Book Description
-updates the previous analyses and discussions of system economics to include solar and storage resource options versus the previously analyzed fossil-fueled generation and demand side management (DSM) resource options. -provides a step-by-step analysis approach that can be used to determine the amount of solar and storage that would be needed by a utility to achieve zero or near-zero carbon emissions, plus discusses how the projected level of electric vehicles (EVs) impact those calculations. - presents a discussion of how the firm capacity of solar is calculated based on a utility’s Summer and Winter peak day load shapes and how these values will change over time. - provides a discussion and calculation methodology of how a utility can determine what firm capacity values should be assigned to batteries of different durations (2-hour, 4-hour, etc.) for use in system reliability and economic analyses and how these values will change over time. - continues the approach taken in the 1st edition of explaining topics in language understandable to both the layman and the energy professional. In that respect, the numerous figures and tables provide both graphic and numerical calculation depictions of the issues discussed.
Publisher: CRC Press
ISBN: 100095949X
Category : Science
Languages : en
Pages : 430
Book Description
-updates the previous analyses and discussions of system economics to include solar and storage resource options versus the previously analyzed fossil-fueled generation and demand side management (DSM) resource options. -provides a step-by-step analysis approach that can be used to determine the amount of solar and storage that would be needed by a utility to achieve zero or near-zero carbon emissions, plus discusses how the projected level of electric vehicles (EVs) impact those calculations. - presents a discussion of how the firm capacity of solar is calculated based on a utility’s Summer and Winter peak day load shapes and how these values will change over time. - provides a discussion and calculation methodology of how a utility can determine what firm capacity values should be assigned to batteries of different durations (2-hour, 4-hour, etc.) for use in system reliability and economic analyses and how these values will change over time. - continues the approach taken in the 1st edition of explaining topics in language understandable to both the layman and the energy professional. In that respect, the numerous figures and tables provide both graphic and numerical calculation depictions of the issues discussed.