Author: Mark R. Shapland
Publisher:
ISBN: 9780996889742
Category : Actuarial science
Languages : en
Pages : 116
Book Description
Using the ODP Bootstrap Model
Author: Mark R. Shapland
Publisher:
ISBN: 9780996889742
Category : Actuarial science
Languages : en
Pages : 116
Book Description
Publisher:
ISBN: 9780996889742
Category : Actuarial science
Languages : en
Pages : 116
Book Description
Claims Reserving in General Insurance
Author: David Hindley
Publisher: Cambridge University Press
ISBN: 1108514847
Category : Mathematics
Languages : en
Pages : 514
Book Description
This is a comprehensive and accessible reference source that documents the theoretical and practical aspects of all the key deterministic and stochastic reserving methods that have been developed for use in general insurance. Worked examples and mathematical details are included, along with many of the broader topics associated with reserving in practice. The key features of reserving in a range of different contexts in the UK and elsewhere are also covered. The book contains material that will appeal to anyone with an interest in claims reserving. It can be used as a learning resource for actuarial students who are studying the relevant parts of their professional bodies' examinations, as well as by others who are new to the subject. More experienced insurance and other professionals can use the book to refresh or expand their knowledge in any of the wide range of reserving topics covered in the book.
Publisher: Cambridge University Press
ISBN: 1108514847
Category : Mathematics
Languages : en
Pages : 514
Book Description
This is a comprehensive and accessible reference source that documents the theoretical and practical aspects of all the key deterministic and stochastic reserving methods that have been developed for use in general insurance. Worked examples and mathematical details are included, along with many of the broader topics associated with reserving in practice. The key features of reserving in a range of different contexts in the UK and elsewhere are also covered. The book contains material that will appeal to anyone with an interest in claims reserving. It can be used as a learning resource for actuarial students who are studying the relevant parts of their professional bodies' examinations, as well as by others who are new to the subject. More experienced insurance and other professionals can use the book to refresh or expand their knowledge in any of the wide range of reserving topics covered in the book.
Stochastic Loss Reserving Using Generalized Linear Models
Author: Greg Taylor
Publisher:
ISBN: 9780996889704
Category :
Languages : en
Pages : 100
Book Description
In this monograph, authors Greg Taylor and Gráinne McGuire discuss generalized linear models (GLM) for loss reserving, beginning with strong emphasis on the chain ladder. The chain ladder is formulated in a GLM context, as is the statistical distribution of the loss reserve. This structure is then used to test the need for departure from the chain ladder model and to consider natural extensions of the chain ladder model that lend themselves to the GLM framework.
Publisher:
ISBN: 9780996889704
Category :
Languages : en
Pages : 100
Book Description
In this monograph, authors Greg Taylor and Gráinne McGuire discuss generalized linear models (GLM) for loss reserving, beginning with strong emphasis on the chain ladder. The chain ladder is formulated in a GLM context, as is the statistical distribution of the loss reserve. This structure is then used to test the need for departure from the chain ladder model and to consider natural extensions of the chain ladder model that lend themselves to the GLM framework.
Claim Models
Author: Greg Taylor
Publisher: MDPI
ISBN: 3039286641
Category : Business & Economics
Languages : en
Pages : 108
Book Description
This collection of articles addresses the most modern forms of loss reserving methodology: granular models and machine learning models. New methodologies come with questions about their applicability. These questions are discussed in one article, which focuses on the relative merits of granular and machine learning models. Others illustrate applications with real-world data. The examples include neural networks, which, though well known in some disciplines, have previously been limited in the actuarial literature. This volume expands on that literature, with specific attention to their application to loss reserving. For example, one of the articles introduces the application of neural networks of the gated recurrent unit form to the actuarial literature, whereas another uses a penalized neural network. Neural networks are not the only form of machine learning, and two other papers outline applications of gradient boosting and regression trees respectively. Both articles construct loss reserves at the individual claim level so that these models resemble granular models. One of these articles provides a practical application of the model to claim watching, the action of monitoring claim development and anticipating major features. Such watching can be used as an early warning system or for other administrative purposes. Overall, this volume is an extremely useful addition to the libraries of those working at the loss reserving frontier.
Publisher: MDPI
ISBN: 3039286641
Category : Business & Economics
Languages : en
Pages : 108
Book Description
This collection of articles addresses the most modern forms of loss reserving methodology: granular models and machine learning models. New methodologies come with questions about their applicability. These questions are discussed in one article, which focuses on the relative merits of granular and machine learning models. Others illustrate applications with real-world data. The examples include neural networks, which, though well known in some disciplines, have previously been limited in the actuarial literature. This volume expands on that literature, with specific attention to their application to loss reserving. For example, one of the articles introduces the application of neural networks of the gated recurrent unit form to the actuarial literature, whereas another uses a penalized neural network. Neural networks are not the only form of machine learning, and two other papers outline applications of gradient boosting and regression trees respectively. Both articles construct loss reserves at the individual claim level so that these models resemble granular models. One of these articles provides a practical application of the model to claim watching, the action of monitoring claim development and anticipating major features. Such watching can be used as an early warning system or for other administrative purposes. Overall, this volume is an extremely useful addition to the libraries of those working at the loss reserving frontier.
Bayesian Claims Reserving Methods in Non-life Insurance with Stan
Author: Guangyuan Gao
Publisher: Springer
ISBN: 9811336091
Category : Mathematics
Languages : en
Pages : 210
Book Description
This book first provides a review of various aspects of Bayesian statistics. It then investigates three types of claims reserving models in the Bayesian framework: chain ladder models, basis expansion models involving a tail factor, and multivariate copula models. For the Bayesian inferential methods, this book largely relies on Stan, a specialized software environment which applies Hamiltonian Monte Carlo method and variational Bayes.
Publisher: Springer
ISBN: 9811336091
Category : Mathematics
Languages : en
Pages : 210
Book Description
This book first provides a review of various aspects of Bayesian statistics. It then investigates three types of claims reserving models in the Bayesian framework: chain ladder models, basis expansion models involving a tail factor, and multivariate copula models. For the Bayesian inferential methods, this book largely relies on Stan, a specialized software environment which applies Hamiltonian Monte Carlo method and variational Bayes.
Computational Actuarial Science with R
Author: Arthur Charpentier
Publisher: CRC Press
ISBN: 1466592605
Category : Business & Economics
Languages : en
Pages : 638
Book Description
A Hands-On Approach to Understanding and Using Actuarial ModelsComputational Actuarial Science with R provides an introduction to the computational aspects of actuarial science. Using simple R code, the book helps you understand the algorithms involved in actuarial computations. It also covers more advanced topics, such as parallel computing and C/
Publisher: CRC Press
ISBN: 1466592605
Category : Business & Economics
Languages : en
Pages : 638
Book Description
A Hands-On Approach to Understanding and Using Actuarial ModelsComputational Actuarial Science with R provides an introduction to the computational aspects of actuarial science. Using simple R code, the book helps you understand the algorithms involved in actuarial computations. It also covers more advanced topics, such as parallel computing and C/
Adaptive Multimedia Retrieval: Identifying, Summarizing, and Recommending Image and Music
Author: Marcin Detyniecki
Publisher: Springer Science & Business Media
ISBN: 3642147577
Category : Computers
Languages : en
Pages : 194
Book Description
This volume constitutes the refereed proceedings of the 6th International Workshop on Adaptive Multimedia Retrieval, AMR 2008, held in Berlin, Germany, in June 2008.
Publisher: Springer Science & Business Media
ISBN: 3642147577
Category : Computers
Languages : en
Pages : 194
Book Description
This volume constitutes the refereed proceedings of the 6th International Workshop on Adaptive Multimedia Retrieval, AMR 2008, held in Berlin, Germany, in June 2008.
Climate Time Series Analysis
Author: Manfred Mudelsee
Publisher: Springer Science & Business Media
ISBN: 9048194822
Category : Science
Languages : en
Pages : 497
Book Description
Climate is a paradigm of a complex system. Analysing climate data is an exciting challenge, which is increased by non-normal distributional shape, serial dependence, uneven spacing and timescale uncertainties. This book presents bootstrap resampling as a computing-intensive method able to meet the challenge. It shows the bootstrap to perform reliably in the most important statistical estimation techniques: regression, spectral analysis, extreme values and correlation. This book is written for climatologists and applied statisticians. It explains step by step the bootstrap algorithms (including novel adaptions) and methods for confidence interval construction. It tests the accuracy of the algorithms by means of Monte Carlo experiments. It analyses a large array of climate time series, giving a detailed account on the data and the associated climatological questions. This makes the book self-contained for graduate students and researchers.
Publisher: Springer Science & Business Media
ISBN: 9048194822
Category : Science
Languages : en
Pages : 497
Book Description
Climate is a paradigm of a complex system. Analysing climate data is an exciting challenge, which is increased by non-normal distributional shape, serial dependence, uneven spacing and timescale uncertainties. This book presents bootstrap resampling as a computing-intensive method able to meet the challenge. It shows the bootstrap to perform reliably in the most important statistical estimation techniques: regression, spectral analysis, extreme values and correlation. This book is written for climatologists and applied statisticians. It explains step by step the bootstrap algorithms (including novel adaptions) and methods for confidence interval construction. It tests the accuracy of the algorithms by means of Monte Carlo experiments. It analyses a large array of climate time series, giving a detailed account on the data and the associated climatological questions. This makes the book self-contained for graduate students and researchers.
Generalized Linear Models for Insurance Rating
Author: Mark Goldburd
Publisher:
ISBN: 9780996889728
Category :
Languages : en
Pages : 106
Book Description
Publisher:
ISBN: 9780996889728
Category :
Languages : en
Pages : 106
Book Description
Stochastic Claims Reserving Methods in Insurance
Author: Mario V. Wüthrich
Publisher: John Wiley & Sons
ISBN: 0470772727
Category : Business & Economics
Languages : en
Pages : 438
Book Description
Claims reserving is central to the insurance industry. Insurance liabilities depend on a number of different risk factors which need to be predicted accurately. This prediction of risk factors and outstanding loss liabilities is the core for pricing insurance products, determining the profitability of an insurance company and for considering the financial strength (solvency) of the company. Following several high-profile company insolvencies, regulatory requirements have moved towards a risk-adjusted basis which has lead to the Solvency II developments. The key focus in the new regime is that financial companies need to analyze adverse developments in their portfolios. Reserving actuaries now have to not only estimate reserves for the outstanding loss liabilities but also to quantify possible shortfalls in these reserves that may lead to potential losses. Such an analysis requires stochastic modeling of loss liability cash flows and it can only be done within a stochastic framework. Therefore stochastic loss liability modeling and quantifying prediction uncertainties has become standard under the new legal framework for the financial industry. This book covers all the mathematical theory and practical guidance needed in order to adhere to these stochastic techniques. Starting with the basic mathematical methods, working right through to the latest developments relevant for practical applications; readers will find out how to estimate total claims reserves while at the same time predicting errors and uncertainty are quantified. Accompanying datasets demonstrate all the techniques, which are easily implemented in a spreadsheet. A practical and essential guide, this book is a must-read in the light of the new solvency requirements for the whole insurance industry.
Publisher: John Wiley & Sons
ISBN: 0470772727
Category : Business & Economics
Languages : en
Pages : 438
Book Description
Claims reserving is central to the insurance industry. Insurance liabilities depend on a number of different risk factors which need to be predicted accurately. This prediction of risk factors and outstanding loss liabilities is the core for pricing insurance products, determining the profitability of an insurance company and for considering the financial strength (solvency) of the company. Following several high-profile company insolvencies, regulatory requirements have moved towards a risk-adjusted basis which has lead to the Solvency II developments. The key focus in the new regime is that financial companies need to analyze adverse developments in their portfolios. Reserving actuaries now have to not only estimate reserves for the outstanding loss liabilities but also to quantify possible shortfalls in these reserves that may lead to potential losses. Such an analysis requires stochastic modeling of loss liability cash flows and it can only be done within a stochastic framework. Therefore stochastic loss liability modeling and quantifying prediction uncertainties has become standard under the new legal framework for the financial industry. This book covers all the mathematical theory and practical guidance needed in order to adhere to these stochastic techniques. Starting with the basic mathematical methods, working right through to the latest developments relevant for practical applications; readers will find out how to estimate total claims reserves while at the same time predicting errors and uncertainty are quantified. Accompanying datasets demonstrate all the techniques, which are easily implemented in a spreadsheet. A practical and essential guide, this book is a must-read in the light of the new solvency requirements for the whole insurance industry.