Author: Yurii Nesterov
Publisher: SIAM
ISBN: 9781611970791
Category : Mathematics
Languages : en
Pages : 414
Book Description
Specialists working in the areas of optimization, mathematical programming, or control theory will find this book invaluable for studying interior-point methods for linear and quadratic programming, polynomial-time methods for nonlinear convex programming, and efficient computational methods for control problems and variational inequalities. A background in linear algebra and mathematical programming is necessary to understand the book. The detailed proofs and lack of "numerical examples" might suggest that the book is of limited value to the reader interested in the practical aspects of convex optimization, but nothing could be further from the truth. An entire chapter is devoted to potential reduction methods precisely because of their great efficiency in practice.
Interior-point Polynomial Algorithms in Convex Programming
Author: Yurii Nesterov
Publisher: SIAM
ISBN: 9781611970791
Category : Mathematics
Languages : en
Pages : 414
Book Description
Specialists working in the areas of optimization, mathematical programming, or control theory will find this book invaluable for studying interior-point methods for linear and quadratic programming, polynomial-time methods for nonlinear convex programming, and efficient computational methods for control problems and variational inequalities. A background in linear algebra and mathematical programming is necessary to understand the book. The detailed proofs and lack of "numerical examples" might suggest that the book is of limited value to the reader interested in the practical aspects of convex optimization, but nothing could be further from the truth. An entire chapter is devoted to potential reduction methods precisely because of their great efficiency in practice.
Publisher: SIAM
ISBN: 9781611970791
Category : Mathematics
Languages : en
Pages : 414
Book Description
Specialists working in the areas of optimization, mathematical programming, or control theory will find this book invaluable for studying interior-point methods for linear and quadratic programming, polynomial-time methods for nonlinear convex programming, and efficient computational methods for control problems and variational inequalities. A background in linear algebra and mathematical programming is necessary to understand the book. The detailed proofs and lack of "numerical examples" might suggest that the book is of limited value to the reader interested in the practical aspects of convex optimization, but nothing could be further from the truth. An entire chapter is devoted to potential reduction methods precisely because of their great efficiency in practice.
Interior Point Methods of Mathematical Programming
Author: Tamás Terlaky
Publisher: Springer Science & Business Media
ISBN: 1461334497
Category : Mathematics
Languages : en
Pages : 544
Book Description
One has to make everything as simple as possible but, never more simple. Albert Einstein Discovery consists of seeing what every body has seen and thinking what nobody has thought. Albert S. ent_Gyorgy; The primary goal of this book is to provide an introduction to the theory of Interior Point Methods (IPMs) in Mathematical Programming. At the same time, we try to present a quick overview of the impact of extensions of IPMs on smooth nonlinear optimization and to demonstrate the potential of IPMs for solving difficult practical problems. The Simplex Method has dominated the theory and practice of mathematical pro gramming since 1947 when Dantzig discovered it. In the fifties and sixties several attempts were made to develop alternative solution methods. At that time the prin cipal base of interior point methods was also developed, for example in the work of Frisch (1955), Caroll (1961), Huard (1967), Fiacco and McCormick (1968) and Dikin (1967). In 1972 Klee and Minty made explicit that in the worst case some variants of the simplex method may require an exponential amount of work to solve Linear Programming (LP) problems. This was at the time when complexity theory became a topic of great interest. People started to classify mathematical programming prob lems as efficiently (in polynomial time) solvable and as difficult (NP-hard) problems. For a while it remained open whether LP was solvable in polynomial time or not. The break-through resolution ofthis problem was obtained by Khachijan (1989).
Publisher: Springer Science & Business Media
ISBN: 1461334497
Category : Mathematics
Languages : en
Pages : 544
Book Description
One has to make everything as simple as possible but, never more simple. Albert Einstein Discovery consists of seeing what every body has seen and thinking what nobody has thought. Albert S. ent_Gyorgy; The primary goal of this book is to provide an introduction to the theory of Interior Point Methods (IPMs) in Mathematical Programming. At the same time, we try to present a quick overview of the impact of extensions of IPMs on smooth nonlinear optimization and to demonstrate the potential of IPMs for solving difficult practical problems. The Simplex Method has dominated the theory and practice of mathematical pro gramming since 1947 when Dantzig discovered it. In the fifties and sixties several attempts were made to develop alternative solution methods. At that time the prin cipal base of interior point methods was also developed, for example in the work of Frisch (1955), Caroll (1961), Huard (1967), Fiacco and McCormick (1968) and Dikin (1967). In 1972 Klee and Minty made explicit that in the worst case some variants of the simplex method may require an exponential amount of work to solve Linear Programming (LP) problems. This was at the time when complexity theory became a topic of great interest. People started to classify mathematical programming prob lems as efficiently (in polynomial time) solvable and as difficult (NP-hard) problems. For a while it remained open whether LP was solvable in polynomial time or not. The break-through resolution ofthis problem was obtained by Khachijan (1989).
Entropy Optimization and Mathematical Programming
Author: Shu-Cherng Fang
Publisher: Springer Science & Business Media
ISBN: 1461561310
Category : Business & Economics
Languages : en
Pages : 350
Book Description
Entropy optimization is a useful combination of classical engineering theory (entropy) with mathematical optimization. The resulting entropy optimization models have proved their usefulness with successful applications in areas such as image reconstruction, pattern recognition, statistical inference, queuing theory, spectral analysis, statistical mechanics, transportation planning, urban and regional planning, input-output analysis, portfolio investment, information analysis, and linear and nonlinear programming. While entropy optimization has been used in different fields, a good number of applicable solution methods have been loosely constructed without sufficient mathematical treatment. A systematic presentation with proper mathematical treatment of this material is needed by practitioners and researchers alike in all application areas. The purpose of this book is to meet this need. Entropy Optimization and Mathematical Programming offers perspectives that meet the needs of diverse user communities so that the users can apply entropy optimization techniques with complete comfort and ease. With this consideration, the authors focus on the entropy optimization problems in finite dimensional Euclidean space such that only some basic familiarity with optimization is required of the reader.
Publisher: Springer Science & Business Media
ISBN: 1461561310
Category : Business & Economics
Languages : en
Pages : 350
Book Description
Entropy optimization is a useful combination of classical engineering theory (entropy) with mathematical optimization. The resulting entropy optimization models have proved their usefulness with successful applications in areas such as image reconstruction, pattern recognition, statistical inference, queuing theory, spectral analysis, statistical mechanics, transportation planning, urban and regional planning, input-output analysis, portfolio investment, information analysis, and linear and nonlinear programming. While entropy optimization has been used in different fields, a good number of applicable solution methods have been loosely constructed without sufficient mathematical treatment. A systematic presentation with proper mathematical treatment of this material is needed by practitioners and researchers alike in all application areas. The purpose of this book is to meet this need. Entropy Optimization and Mathematical Programming offers perspectives that meet the needs of diverse user communities so that the users can apply entropy optimization techniques with complete comfort and ease. With this consideration, the authors focus on the entropy optimization problems in finite dimensional Euclidean space such that only some basic familiarity with optimization is required of the reader.
Topics in Semidefinite and Interior-Point Methods
Author: Panos M. Pardalos
Publisher: American Mathematical Soc.
ISBN: 0821808257
Category : Mathematics
Languages : en
Pages : 272
Book Description
This volume presents refereed papers presented at the workshop Semidefinite Programming and Interior-Point Approaches for Combinatorial Problems: held at The Fields Institute in May 1996. Semidefinite programming (SDP) is a generalization of linear programming (LP) in that the non-negativity constraints on the variables is replaced by a positive semidefinite constraint on matrix variables. Many of the elegant theoretical properties and powerful solution techniques follow through from LP to SDP. In particular, the primal-dual interior-point methods, which are currently so successful for LP, can be used to efficiently solve SDP problems. In addition to the theoretical and algorithmic questions, SDP has found many important applications in combinatorial optimization, control theory and other areas of mathematical programming. The papers in this volume cover a wide spectrum of recent developments in SDP. The volume would be suitable as a textbook for advanced courses in optimization. It is intended for graduate students and researchers in mathematics, computer science, engineering and operations.
Publisher: American Mathematical Soc.
ISBN: 0821808257
Category : Mathematics
Languages : en
Pages : 272
Book Description
This volume presents refereed papers presented at the workshop Semidefinite Programming and Interior-Point Approaches for Combinatorial Problems: held at The Fields Institute in May 1996. Semidefinite programming (SDP) is a generalization of linear programming (LP) in that the non-negativity constraints on the variables is replaced by a positive semidefinite constraint on matrix variables. Many of the elegant theoretical properties and powerful solution techniques follow through from LP to SDP. In particular, the primal-dual interior-point methods, which are currently so successful for LP, can be used to efficiently solve SDP problems. In addition to the theoretical and algorithmic questions, SDP has found many important applications in combinatorial optimization, control theory and other areas of mathematical programming. The papers in this volume cover a wide spectrum of recent developments in SDP. The volume would be suitable as a textbook for advanced courses in optimization. It is intended for graduate students and researchers in mathematics, computer science, engineering and operations.
Linear Programming Using MATLAB®
Author: Nikolaos Ploskas
Publisher: Springer
ISBN: 3319659197
Category : Mathematics
Languages : en
Pages : 646
Book Description
This book offers a theoretical and computational presentation of a variety of linear programming algorithms and methods with an emphasis on the revised simplex method and its components. A theoretical background and mathematical formulation is included for each algorithm as well as comprehensive numerical examples and corresponding MATLAB® code. The MATLAB® implementations presented in this book are sophisticated and allow users to find solutions to large-scale benchmark linear programs. Each algorithm is followed by a computational study on benchmark problems that analyze the computational behavior of the presented algorithms. As a solid companion to existing algorithmic-specific literature, this book will be useful to researchers, scientists, mathematical programmers, and students with a basic knowledge of linear algebra and calculus. The clear presentation enables the reader to understand and utilize all components of simplex-type methods, such as presolve techniques, scaling techniques, pivoting rules, basis update methods, and sensitivity analysis.
Publisher: Springer
ISBN: 3319659197
Category : Mathematics
Languages : en
Pages : 646
Book Description
This book offers a theoretical and computational presentation of a variety of linear programming algorithms and methods with an emphasis on the revised simplex method and its components. A theoretical background and mathematical formulation is included for each algorithm as well as comprehensive numerical examples and corresponding MATLAB® code. The MATLAB® implementations presented in this book are sophisticated and allow users to find solutions to large-scale benchmark linear programs. Each algorithm is followed by a computational study on benchmark problems that analyze the computational behavior of the presented algorithms. As a solid companion to existing algorithmic-specific literature, this book will be useful to researchers, scientists, mathematical programmers, and students with a basic knowledge of linear algebra and calculus. The clear presentation enables the reader to understand and utilize all components of simplex-type methods, such as presolve techniques, scaling techniques, pivoting rules, basis update methods, and sensitivity analysis.
Geometric Programming for Communication Systems
Author: Mung Chiang
Publisher: Now Publishers Inc
ISBN: 9781933019093
Category : Computers
Languages : en
Pages : 172
Book Description
Recently Geometric Programming has been applied to study a variety of problems in the analysis and design of communication systems from information theory and queuing theory to signal processing and network protocols. Geometric Programming for Communication Systems begins its comprehensive treatment of the subject by providing an in-depth tutorial on the theory, algorithms, and modeling methods of Geometric Programming. It then gives a systematic survey of the applications of Geometric Programming to the study of communication systems. It collects in one place various published results in this area, which are currently scattered in several books and many research papers, as well as to date unpublished results. Geometric Programming for Communication Systems is intended for researchers and students who wish to have a comprehensive starting point for understanding the theory and applications of geometric programming in communication systems.
Publisher: Now Publishers Inc
ISBN: 9781933019093
Category : Computers
Languages : en
Pages : 172
Book Description
Recently Geometric Programming has been applied to study a variety of problems in the analysis and design of communication systems from information theory and queuing theory to signal processing and network protocols. Geometric Programming for Communication Systems begins its comprehensive treatment of the subject by providing an in-depth tutorial on the theory, algorithms, and modeling methods of Geometric Programming. It then gives a systematic survey of the applications of Geometric Programming to the study of communication systems. It collects in one place various published results in this area, which are currently scattered in several books and many research papers, as well as to date unpublished results. Geometric Programming for Communication Systems is intended for researchers and students who wish to have a comprehensive starting point for understanding the theory and applications of geometric programming in communication systems.
Interior Point Techniques in Optimization
Author: B. Jansen
Publisher: Springer Science & Business Media
ISBN: 1475755619
Category : Mathematics
Languages : en
Pages : 285
Book Description
Operations research and mathematical programming would not be as advanced today without the many advances in interior point methods during the last decade. These methods can now solve very efficiently and robustly large scale linear, nonlinear and combinatorial optimization problems that arise in various practical applications. The main ideas underlying interior point methods have influenced virtually all areas of mathematical programming including: analyzing and solving linear and nonlinear programming problems, sensitivity analysis, complexity analysis, the analysis of Newton's method, decomposition methods, polynomial approximation for combinatorial problems etc. This book covers the implications of interior techniques for the entire field of mathematical programming, bringing together many results in a uniform and coherent way. For the topics mentioned above the book provides theoretical as well as computational results, explains the intuition behind the main ideas, gives examples as well as proofs, and contains an extensive up-to-date bibliography. Audience: The book is intended for students, researchers and practitioners with a background in operations research, mathematics, mathematical programming, or statistics.
Publisher: Springer Science & Business Media
ISBN: 1475755619
Category : Mathematics
Languages : en
Pages : 285
Book Description
Operations research and mathematical programming would not be as advanced today without the many advances in interior point methods during the last decade. These methods can now solve very efficiently and robustly large scale linear, nonlinear and combinatorial optimization problems that arise in various practical applications. The main ideas underlying interior point methods have influenced virtually all areas of mathematical programming including: analyzing and solving linear and nonlinear programming problems, sensitivity analysis, complexity analysis, the analysis of Newton's method, decomposition methods, polynomial approximation for combinatorial problems etc. This book covers the implications of interior techniques for the entire field of mathematical programming, bringing together many results in a uniform and coherent way. For the topics mentioned above the book provides theoretical as well as computational results, explains the intuition behind the main ideas, gives examples as well as proofs, and contains an extensive up-to-date bibliography. Audience: The book is intended for students, researchers and practitioners with a background in operations research, mathematics, mathematical programming, or statistics.
Algorithms for Convex Optimization
Author: Nisheeth K. Vishnoi
Publisher: Cambridge University Press
ISBN: 1108633994
Category : Computers
Languages : en
Pages : 314
Book Description
In the last few years, Algorithms for Convex Optimization have revolutionized algorithm design, both for discrete and continuous optimization problems. For problems like maximum flow, maximum matching, and submodular function minimization, the fastest algorithms involve essential methods such as gradient descent, mirror descent, interior point methods, and ellipsoid methods. The goal of this self-contained book is to enable researchers and professionals in computer science, data science, and machine learning to gain an in-depth understanding of these algorithms. The text emphasizes how to derive key algorithms for convex optimization from first principles and how to establish precise running time bounds. This modern text explains the success of these algorithms in problems of discrete optimization, as well as how these methods have significantly pushed the state of the art of convex optimization itself.
Publisher: Cambridge University Press
ISBN: 1108633994
Category : Computers
Languages : en
Pages : 314
Book Description
In the last few years, Algorithms for Convex Optimization have revolutionized algorithm design, both for discrete and continuous optimization problems. For problems like maximum flow, maximum matching, and submodular function minimization, the fastest algorithms involve essential methods such as gradient descent, mirror descent, interior point methods, and ellipsoid methods. The goal of this self-contained book is to enable researchers and professionals in computer science, data science, and machine learning to gain an in-depth understanding of these algorithms. The text emphasizes how to derive key algorithms for convex optimization from first principles and how to establish precise running time bounds. This modern text explains the success of these algorithms in problems of discrete optimization, as well as how these methods have significantly pushed the state of the art of convex optimization itself.
Interior Point Methods for Linear Optimization
Author: Cornelis Roos
Publisher: Springer Science & Business Media
ISBN: 0387263799
Category : Mathematics
Languages : en
Pages : 501
Book Description
The era of interior point methods (IPMs) was initiated by N. Karmarkar’s 1984 paper, which triggered turbulent research and reshaped almost all areas of optimization theory and computational practice. This book offers comprehensive coverage of IPMs. It details the main results of more than a decade of IPM research. Numerous exercises are provided to aid in understanding the material.
Publisher: Springer Science & Business Media
ISBN: 0387263799
Category : Mathematics
Languages : en
Pages : 501
Book Description
The era of interior point methods (IPMs) was initiated by N. Karmarkar’s 1984 paper, which triggered turbulent research and reshaped almost all areas of optimization theory and computational practice. This book offers comprehensive coverage of IPMs. It details the main results of more than a decade of IPM research. Numerous exercises are provided to aid in understanding the material.
Computational Optimal Transport
Author: Gabriel Peyre
Publisher: Foundations and Trends(r) in M
ISBN: 9781680835502
Category : Computers
Languages : en
Pages : 272
Book Description
The goal of Optimal Transport (OT) is to define geometric tools that are useful to compare probability distributions. Their use dates back to 1781. Recent years have witnessed a new revolution in the spread of OT, thanks to the emergence of approximate solvers that can scale to sizes and dimensions that are relevant to data sciences. Thanks to this newfound scalability, OT is being increasingly used to unlock various problems in imaging sciences (such as color or texture processing), computer vision and graphics (for shape manipulation) or machine learning (for regression, classification and density fitting). This monograph reviews OT with a bias toward numerical methods and their applications in data sciences, and sheds lights on the theoretical properties of OT that make it particularly useful for some of these applications. Computational Optimal Transport presents an overview of the main theoretical insights that support the practical effectiveness of OT before explaining how to turn these insights into fast computational schemes. Written for readers at all levels, the authors provide descriptions of foundational theory at two-levels. Generally accessible to all readers, more advanced readers can read the specially identified more general mathematical expositions of optimal transport tailored for discrete measures. Furthermore, several chapters deal with the interplay between continuous and discrete measures, and are thus targeting a more mathematically-inclined audience. This monograph will be a valuable reference for researchers and students wishing to get a thorough understanding of Computational Optimal Transport, a mathematical gem at the interface of probability, analysis and optimization.
Publisher: Foundations and Trends(r) in M
ISBN: 9781680835502
Category : Computers
Languages : en
Pages : 272
Book Description
The goal of Optimal Transport (OT) is to define geometric tools that are useful to compare probability distributions. Their use dates back to 1781. Recent years have witnessed a new revolution in the spread of OT, thanks to the emergence of approximate solvers that can scale to sizes and dimensions that are relevant to data sciences. Thanks to this newfound scalability, OT is being increasingly used to unlock various problems in imaging sciences (such as color or texture processing), computer vision and graphics (for shape manipulation) or machine learning (for regression, classification and density fitting). This monograph reviews OT with a bias toward numerical methods and their applications in data sciences, and sheds lights on the theoretical properties of OT that make it particularly useful for some of these applications. Computational Optimal Transport presents an overview of the main theoretical insights that support the practical effectiveness of OT before explaining how to turn these insights into fast computational schemes. Written for readers at all levels, the authors provide descriptions of foundational theory at two-levels. Generally accessible to all readers, more advanced readers can read the specially identified more general mathematical expositions of optimal transport tailored for discrete measures. Furthermore, several chapters deal with the interplay between continuous and discrete measures, and are thus targeting a more mathematically-inclined audience. This monograph will be a valuable reference for researchers and students wishing to get a thorough understanding of Computational Optimal Transport, a mathematical gem at the interface of probability, analysis and optimization.