Structural Equation Modeling

Structural Equation Modeling PDF Author: Jichuan Wang
Publisher: John Wiley & Sons
ISBN: 1119422728
Category : Mathematics
Languages : en
Pages : 662

Get Book Here

Book Description
Presents a useful guide for applications of SEM whilst systematically demonstrating various SEM models using Mplus Focusing on the conceptual and practical aspects of Structural Equation Modeling (SEM), this book demonstrates basic concepts and examples of various SEM models, along with updates on many advanced methods, including confirmatory factor analysis (CFA) with categorical items, bifactor model, Bayesian CFA model, item response theory (IRT) model, graded response model (GRM), multiple imputation (MI) of missing values, plausible values of latent variables, moderated mediation model, Bayesian SEM, latent growth modeling (LGM) with individually varying times of observations, dynamic structural equation modeling (DSEM), residual dynamic structural equation modeling (RDSEM), testing measurement invariance of instrument with categorical variables, longitudinal latent class analysis (LLCA), latent transition analysis (LTA), growth mixture modeling (GMM) with covariates and distal outcome, manual implementation of the BCH method and the three-step method for mixture modeling, Monte Carlo simulation power analysis for various SEM models, and estimate sample size for latent class analysis (LCA) model. The statistical modeling program Mplus Version 8.2 is featured with all models updated. It provides researchers with a flexible tool that allows them to analyze data with an easy-to-use interface and graphical displays of data and analysis results. Intended as both a teaching resource and a reference guide, and written in non-mathematical terms, Structural Equation Modeling: Applications Using Mplus, 2nd edition provides step-by-step instructions of model specification, estimation, evaluation, and modification. Chapters cover: Confirmatory Factor Analysis (CFA); Structural Equation Models (SEM); SEM for Longitudinal Data; Multi-Group Models; Mixture Models; and Power Analysis and Sample Size Estimate for SEM. Presents a useful reference guide for applications of SEM while systematically demonstrating various advanced SEM models Discusses and demonstrates various SEM models using both cross-sectional and longitudinal data with both continuous and categorical outcomes Provides step-by-step instructions of model specification and estimation, as well as detailed interpretation of Mplus results using real data sets Introduces different methods for sample size estimate and statistical power analysis for SEM Structural Equation Modeling is an excellent book for researchers and graduate students of SEM who want to understand the theory and learn how to build their own SEM models using Mplus.

Structural Equation Modeling

Structural Equation Modeling PDF Author: Jichuan Wang
Publisher: John Wiley & Sons
ISBN: 1119422728
Category : Mathematics
Languages : en
Pages : 662

Get Book Here

Book Description
Presents a useful guide for applications of SEM whilst systematically demonstrating various SEM models using Mplus Focusing on the conceptual and practical aspects of Structural Equation Modeling (SEM), this book demonstrates basic concepts and examples of various SEM models, along with updates on many advanced methods, including confirmatory factor analysis (CFA) with categorical items, bifactor model, Bayesian CFA model, item response theory (IRT) model, graded response model (GRM), multiple imputation (MI) of missing values, plausible values of latent variables, moderated mediation model, Bayesian SEM, latent growth modeling (LGM) with individually varying times of observations, dynamic structural equation modeling (DSEM), residual dynamic structural equation modeling (RDSEM), testing measurement invariance of instrument with categorical variables, longitudinal latent class analysis (LLCA), latent transition analysis (LTA), growth mixture modeling (GMM) with covariates and distal outcome, manual implementation of the BCH method and the three-step method for mixture modeling, Monte Carlo simulation power analysis for various SEM models, and estimate sample size for latent class analysis (LCA) model. The statistical modeling program Mplus Version 8.2 is featured with all models updated. It provides researchers with a flexible tool that allows them to analyze data with an easy-to-use interface and graphical displays of data and analysis results. Intended as both a teaching resource and a reference guide, and written in non-mathematical terms, Structural Equation Modeling: Applications Using Mplus, 2nd edition provides step-by-step instructions of model specification, estimation, evaluation, and modification. Chapters cover: Confirmatory Factor Analysis (CFA); Structural Equation Models (SEM); SEM for Longitudinal Data; Multi-Group Models; Mixture Models; and Power Analysis and Sample Size Estimate for SEM. Presents a useful reference guide for applications of SEM while systematically demonstrating various advanced SEM models Discusses and demonstrates various SEM models using both cross-sectional and longitudinal data with both continuous and categorical outcomes Provides step-by-step instructions of model specification and estimation, as well as detailed interpretation of Mplus results using real data sets Introduces different methods for sample size estimate and statistical power analysis for SEM Structural Equation Modeling is an excellent book for researchers and graduate students of SEM who want to understand the theory and learn how to build their own SEM models using Mplus.

Structural Equation Modeling with Mplus

Structural Equation Modeling with Mplus PDF Author: Barbara M. Byrne
Publisher: Routledge
ISBN: 1136663460
Category : Psychology
Languages : en
Pages : 431

Get Book Here

Book Description
Modeled after Barbara Byrne’s other best-selling structural equation modeling (SEM) books, this practical guide reviews the basic concepts and applications of SEM using Mplus Versions 5 & 6. The author reviews SEM applications based on actual data taken from her own research. Using non-mathematical language, it is written for the novice SEM user. With each application chapter, the author "walks" the reader through all steps involved in testing the SEM model including: an explanation of the issues addressed illustrated and annotated testing of the hypothesized and post hoc models explanation and interpretation of all Mplus input and output files important caveats pertinent to the SEM application under study a description of the data and reference upon which the model was based the corresponding data and syntax files available under "Supplementary Material" below The first two chapters introduce the fundamental concepts of SEM and important basics of the Mplus program. The remaining chapters focus on SEM applications and include a variety of SEM models presented within the context of three sections: Single-group analyses, Multiple-group analyses, and other important topics, the latter of which includes the multitrait-multimethod, latent growth curve, and multilevel models. Intended for researchers, practitioners, and students who use SEM and Mplus, this book is an ideal resource for graduate level courses on SEM taught in psychology, education, business, and other social and health sciences and/or as a supplement for courses on applied statistics, multivariate statistics, intermediate or advanced statistics, and/or research design. Appropriate for those with limited exposure to SEM or Mplus, a prerequisite of basic statistics through regression analysis is recommended.

Using Mplus for Structural Equation Modeling

Using Mplus for Structural Equation Modeling PDF Author: E. Kevin Kelloway
Publisher: SAGE Publications
ISBN: 1483313441
Category : Social Science
Languages : en
Pages : 249

Get Book Here

Book Description
Ideal for researchers and graduate students in the social sciences who require knowledge of structural equation modeling techniques to answer substantive research questions, Using Mplus for Structural Equation Modeling provides a reader-friendly introduction to the major types of structural equation models implemented in the Mplus framework. This practical book, which updates author E. Kevin Kelloway’s 1998 book Using LISREL for Structural Equation Modeling, retains the successful five-step process employed in the earlier book, with a thorough update for use in the Mplus environment. Kelloway provides an overview of structural equation modeling techniques in Mplus, including the estimation of confirmatory factor analysis and observed variable path analysis. He also covers multilevel modeling for hypothesis testing in real life settings and offers an introduction to the extended capabilities of Mplus, such as exploratory structural equation modeling and estimation and testing of mediated relationships. A sample application with the source code, printout, and results is presented for each type of analysis. ”An excellent book on the ins and outs of using Mplus, as well as the practice of structural equation modeling in applied research.” —Kevin J. Grimm, University of California, Davis

Longitudinal Structural Equation Modeling with Mplus

Longitudinal Structural Equation Modeling with Mplus PDF Author: Christian Geiser
Publisher: Guilford Publications
ISBN: 1462546412
Category : Social Science
Languages : en
Pages : 370

Get Book Here

Book Description
An in-depth guide to executing longitudinal confirmatory factor analysis (CFA) and structural equation modeling (SEM) in Mplus, this book uses latent state–trait (LST) theory as a unifying conceptual framework, including the relevant coefficients of consistency, occasion specificity, and reliability. Following a standard format, chapters review the theoretical underpinnings, strengths, and limitations of the various models; present data examples; and demonstrate each model's application and interpretation in Mplus, with numerous screen shots and output excerpts. Coverage encompasses both traditional models (autoregressive, change score, and growth curve models) and LST models for analyzing single- and multiple-indicator data. The book discusses measurement equivalence testing, intensive longitudinal data modeling, and missing data handling, and provides strategies for model selection and reporting of results. User-friendly features include special-topic boxes, chapter summaries, and suggestions for further reading. The companion website features data sets, annotated syntax files, and output for all of the examples.

Regression and Mediation Analysis Using Mplus

Regression and Mediation Analysis Using Mplus PDF Author: Bengt O. Muthen
Publisher:
ISBN: 9780982998311
Category :
Languages : en
Pages : 535

Get Book Here

Book Description


Data Analysis with Mplus

Data Analysis with Mplus PDF Author: Christian Geiser
Publisher: Guilford Press
ISBN: 1462502458
Category : Social Science
Languages : en
Pages : 320

Get Book Here

Book Description
A practical introduction to using Mplus for the analysis of multivariate data, this volume provides step-by-step guidance, complete with real data examples, numerous screen shots, and output excerpts. The author shows how to prepare a data set for import in Mplus using SPSS. He explains how to specify different types of models in Mplus syntax and address typical caveats--for example, assessing measurement invariance in longitudinal SEMs. Coverage includes path and factor analytic models as well as mediational, longitudinal, multilevel, and latent class models. Specific programming tips and solution strategies are presented in boxes in each chapter. The companion website (http://crmda.ku.edu/guilford/geiser) features data sets, annotated syntax files, and output for all of the examples. Of special utility to instructors and students, many of the examples can be run with the free demo version of Mplus.

Growth Modeling

Growth Modeling PDF Author: Kevin J. Grimm
Publisher: Guilford Publications
ISBN: 1462526063
Category : Social Science
Languages : en
Pages : 558

Get Book Here

Book Description
Growth models are among the core methods for analyzing how and when people change. Discussing both structural equation and multilevel modeling approaches, this book leads readers step by step through applying each model to longitudinal data to answer particular research questions. It demonstrates cutting-edge ways to describe linear and nonlinear change patterns, examine within-person and between-person differences in change, study change in latent variables, identify leading and lagging indicators of change, evaluate co-occurring patterns of change across multiple variables, and more. User-friendly features include real data examples, code (for Mplus or NLMIXED in SAS, and OpenMx or nlme in R), discussion of the output, and interpretation of each model's results. User-Friendly Features *Real, worked-through longitudinal data examples serving as illustrations in each chapter. *Script boxes that provide code for fitting the models to example data and facilitate application to the reader's own data. *"Important Considerations" sections offering caveats, warnings, and recommendations for the use of specific models. *Companion website supplying datasets and syntax for the book's examples, along with additional code in SAS/R for linear mixed-effects modeling.

Mplus Version 8 User's Guide

Mplus Version 8 User's Guide PDF Author: Linda K. Muthen
Publisher:
ISBN: 9780982998328
Category :
Languages : en
Pages :

Get Book Here

Book Description


Multilevel Structural Equation Modeling

Multilevel Structural Equation Modeling PDF Author: Bruno Castanho Silva
Publisher: SAGE Publications
ISBN: 1544323034
Category : Social Science
Languages : en
Pages : 127

Get Book Here

Book Description
Multilevel Structural Equation Modeling serves as a minimally technical overview of multilevel structural equation modeling (MSEM) for applied researchers and advanced graduate students in the social sciences. As the first book of its kind, this title is an accessible, hands-on introduction for beginners of the topic. The authors predict a growth in this area, fueled by both data availability and also the availability of new and improved software to run these models. The applied approach, combined with a graphical presentation style and minimal reliance on complex matrix algebra guarantee that this volume will be useful to social science graduate students wanting to utilize such models.

Using LISREL for Structural Equation Modeling

Using LISREL for Structural Equation Modeling PDF Author: E. Kevin Kelloway
Publisher: SAGE
ISBN: 9780761906261
Category : Computers
Languages : en
Pages : 164

Get Book Here

Book Description
A highly readable introduction, Using LISREL for Structural Equation Modeling is for researchers and graduate students in the social sciences who want or need to use structural equation modeling techniques to answer substantive research questions. Author E. Kevin Kelloway provides an overview of structural equation modeling including the theory and logic of structural equation models (SEMs), assessing the "fit" of SEMs to the data, and implementation of SEMs in the LISREL environment. Specific applications of SEMs are considered, including confirmatory factor analysis, observed variable path analysis, and latent variable path analysis. A sample application including the source code, printout, and results section is presented for each type of analysis. Tricks of the trade for structural equation modeling are presented, including the use of single-indicator latent variable and reducing the cognitive complexity of models.