Use of Hydraulic Tests to Identify Conceptual Models of Heterogeneity for Fractured Rock Aquifers.

Use of Hydraulic Tests to Identify Conceptual Models of Heterogeneity for Fractured Rock Aquifers. PDF Author: Pablo A. Cello
Publisher:
ISBN: 9781243751928
Category :
Languages : en
Pages : 232

Get Book Here

Book Description
Important aquifers, petroleum reservoirs, geothermal reservoirs, and waste disposal sites throughout the world are located in fractured rock formations. Responsible management of these resources and sites requires appropriate field characterization studies and modeling techniques to assess the impact of management alternatives. Characterization and modeling of aquifers is particularly challenging in fractured media, where flow is concentrated into channels and thus violates the assumptions of traditional analysis approaches. The General Radial Flow (GRF) model is an alternative method for hydraulic test interpretation that infers an additional parameter, the flow dimension n, to describe the flow geometry. Previous studies have reported non-integer flow dimensions for a number of aquifers and reservoirs of various rock types, suggesting that flow is dominated by a series of fractal channels [Acuna and Yortsos, 1995]. Typically, the information carried by the flow dimension is ignored in subsequent modeling studies. The present work is a Monte Carlo analysis of numerical models of aquifer tests in two-dimensional fractured media, with the objective to identify stochastic models of aquifer heterogeneity that consistently produce stable apparent flow dimensions in agreement with those inferred from aquifer test conducted in fractured rock aquifers. The flow dimension is examined first for three conventional stochastic models of the transmissivity field: multivariate log Gaussian (mvG), Fractional Brownian Motion (fBm), and Site Percolation Network (SPN). Then, the more realistic discrete fracture network (DFN) model, with fracture lengths distributed as a power-law is analyzed. The study is focused on the relationships among the parameters of a DFN, the flow dimension, and the regime of diffusion of pressure transients of aquifer tests (e.g., Fickian or non-Fickian). Results demonstrate that the DFN model is the best candidate to represent the heterogeneity of fractured rock aquifers. In particular for the DFN model, the apparent flow dimension and anomalous diffusion exponent k depend on both the density and the power of the fracture length distribution, and thus also on the connectivity regime of the fracture network system. Depending on the connectivity regime, the apparent flow dimension stabilizes to less than the Euclidean dimension and the apparent value of k

Use of Hydraulic Tests to Identify Conceptual Models of Heterogeneity for Fractured Rock Aquifers.

Use of Hydraulic Tests to Identify Conceptual Models of Heterogeneity for Fractured Rock Aquifers. PDF Author: Pablo A. Cello
Publisher:
ISBN: 9781243751928
Category :
Languages : en
Pages : 232

Get Book Here

Book Description
Important aquifers, petroleum reservoirs, geothermal reservoirs, and waste disposal sites throughout the world are located in fractured rock formations. Responsible management of these resources and sites requires appropriate field characterization studies and modeling techniques to assess the impact of management alternatives. Characterization and modeling of aquifers is particularly challenging in fractured media, where flow is concentrated into channels and thus violates the assumptions of traditional analysis approaches. The General Radial Flow (GRF) model is an alternative method for hydraulic test interpretation that infers an additional parameter, the flow dimension n, to describe the flow geometry. Previous studies have reported non-integer flow dimensions for a number of aquifers and reservoirs of various rock types, suggesting that flow is dominated by a series of fractal channels [Acuna and Yortsos, 1995]. Typically, the information carried by the flow dimension is ignored in subsequent modeling studies. The present work is a Monte Carlo analysis of numerical models of aquifer tests in two-dimensional fractured media, with the objective to identify stochastic models of aquifer heterogeneity that consistently produce stable apparent flow dimensions in agreement with those inferred from aquifer test conducted in fractured rock aquifers. The flow dimension is examined first for three conventional stochastic models of the transmissivity field: multivariate log Gaussian (mvG), Fractional Brownian Motion (fBm), and Site Percolation Network (SPN). Then, the more realistic discrete fracture network (DFN) model, with fracture lengths distributed as a power-law is analyzed. The study is focused on the relationships among the parameters of a DFN, the flow dimension, and the regime of diffusion of pressure transients of aquifer tests (e.g., Fickian or non-Fickian). Results demonstrate that the DFN model is the best candidate to represent the heterogeneity of fractured rock aquifers. In particular for the DFN model, the apparent flow dimension and anomalous diffusion exponent k depend on both the density and the power of the fracture length distribution, and thus also on the connectivity regime of the fracture network system. Depending on the connectivity regime, the apparent flow dimension stabilizes to less than the Euclidean dimension and the apparent value of k

Rock Fractures and Fluid Flow

Rock Fractures and Fluid Flow PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309049962
Category : Science
Languages : en
Pages : 568

Get Book Here

Book Description
Scientific understanding of fluid flow in rock fracturesâ€"a process underlying contemporary earth science problems from the search for petroleum to the controversy over nuclear waste storageâ€"has grown significantly in the past 20 years. This volume presents a comprehensive report on the state of the field, with an interdisciplinary viewpoint, case studies of fracture sites, illustrations, conclusions, and research recommendations. The book addresses these questions: How can fractures that are significant hydraulic conductors be identified, located, and characterized? How do flow and transport occur in fracture systems? How can changes in fracture systems be predicted and controlled? Among other topics, the committee provides a geomechanical understanding of fracture formation, reviews methods for detecting subsurface fractures, and looks at the use of hydraulic and tracer tests to investigate fluid flow. The volume examines the state of conceptual and mathematical modeling, and it provides a useful framework for understanding the complexity of fracture changes that occur during fluid pumping and other engineering practices. With a practical and multidisciplinary outlook, this volume will be welcomed by geologists, petroleum geologists, geoengineers, geophysicists, hydrologists, researchers, educators and students in these fields, and public officials involved in geological projects.

Characterization, Modeling, Monitoring, and Remediation of Fractured Rock

Characterization, Modeling, Monitoring, and Remediation of Fractured Rock PDF Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309373727
Category : Science
Languages : en
Pages : 177

Get Book Here

Book Description
Fractured rock is the host or foundation for innumerable engineered structures related to energy, water, waste, and transportation. Characterizing, modeling, and monitoring fractured rock sites is critical to the functioning of those infrastructure, as well as to optimizing resource recovery and contaminant management. Characterization, Modeling, Monitoring, and Remediation of Fractured Rock examines the state of practice and state of art in the characterization of fractured rock and the chemical and biological processes related to subsurface contaminant fate and transport. This report examines new developments, knowledge, and approaches to engineering at fractured rock sites since the publication of the 1996 National Research Council report Rock Fractures and Fluid Flow: Contemporary Understanding and Fluid Flow. Fundamental understanding of the physical nature of fractured rock has changed little since 1996, but many new characterization tools have been developed, and there is now greater appreciation for the importance of chemical and biological processes that can occur in the fractured rock environment. The findings of Characterization, Modeling, Monitoring, and Remediation of Fractured Rock can be applied to all types of engineered infrastructure, but especially to engineered repositories for buried or stored waste and to fractured rock sites that have been contaminated as a result of past disposal or other practices. The recommendations of this report are intended to help the practitioner, researcher, and decision maker take a more interdisciplinary approach to engineering in the fractured rock environment. This report describes how existing tools-some only recently developed-can be used to increase the accuracy and reliability of engineering design and management given the interacting forces of nature. With an interdisciplinary approach, it is possible to conceptualize and model the fractured rock environment with acceptable levels of uncertainty and reliability, and to design systems that maximize remediation and long-term performance. Better scientific understanding could inform regulations, policies, and implementation guidelines related to infrastructure development and operations. The recommendations for research and applications to enhance practice of this book make it a valuable resource for students and practitioners in this field.

Rock Fractures and Fluid Flow

Rock Fractures and Fluid Flow PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309103711
Category : Science
Languages : en
Pages : 568

Get Book Here

Book Description
Scientific understanding of fluid flow in rock fracturesâ€"a process underlying contemporary earth science problems from the search for petroleum to the controversy over nuclear waste storageâ€"has grown significantly in the past 20 years. This volume presents a comprehensive report on the state of the field, with an interdisciplinary viewpoint, case studies of fracture sites, illustrations, conclusions, and research recommendations. The book addresses these questions: How can fractures that are significant hydraulic conductors be identified, located, and characterized? How do flow and transport occur in fracture systems? How can changes in fracture systems be predicted and controlled? Among other topics, the committee provides a geomechanical understanding of fracture formation, reviews methods for detecting subsurface fractures, and looks at the use of hydraulic and tracer tests to investigate fluid flow. The volume examines the state of conceptual and mathematical modeling, and it provides a useful framework for understanding the complexity of fracture changes that occur during fluid pumping and other engineering practices. With a practical and multidisciplinary outlook, this volume will be welcomed by geologists, petroleum geologists, geoengineers, geophysicists, hydrologists, researchers, educators and students in these fields, and public officials involved in geological projects.

Design and Analysis of Tracer Tests to Determine Effective Porosity and Dispersivity in Fractured Sedimentary Rocks, Newark Basin, New Jersey

Design and Analysis of Tracer Tests to Determine Effective Porosity and Dispersivity in Fractured Sedimentary Rocks, Newark Basin, New Jersey PDF Author: Glen B. Carleton
Publisher:
ISBN:
Category : Aquifers
Languages : en
Pages : 96

Get Book Here

Book Description


Rock Fractures and Fluid Flow

Rock Fractures and Fluid Flow PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309176883
Category : Science
Languages : en
Pages : 568

Get Book Here

Book Description
Scientific understanding of fluid flow in rock fracturesâ€"a process underlying contemporary earth science problems from the search for petroleum to the controversy over nuclear waste storageâ€"has grown significantly in the past 20 years. This volume presents a comprehensive report on the state of the field, with an interdisciplinary viewpoint, case studies of fracture sites, illustrations, conclusions, and research recommendations. The book addresses these questions: How can fractures that are significant hydraulic conductors be identified, located, and characterized? How do flow and transport occur in fracture systems? How can changes in fracture systems be predicted and controlled? Among other topics, the committee provides a geomechanical understanding of fracture formation, reviews methods for detecting subsurface fractures, and looks at the use of hydraulic and tracer tests to investigate fluid flow. The volume examines the state of conceptual and mathematical modeling, and it provides a useful framework for understanding the complexity of fracture changes that occur during fluid pumping and other engineering practices. With a practical and multidisciplinary outlook, this volume will be welcomed by geologists, petroleum geologists, geoengineers, geophysicists, hydrologists, researchers, educators and students in these fields, and public officials involved in geological projects.

A Guide to Regional Groundwater Flow in Fractured Rock Aquifers

A Guide to Regional Groundwater Flow in Fractured Rock Aquifers PDF Author: Peter G. Cook
Publisher: CSIRO Publishing
ISBN: 9781740082334
Category : Aquifers
Languages : en
Pages : 108

Get Book Here

Book Description
This book describes field methods for measuring rates of groundwater flow in fractured rock aquifers and draws heavily on results of three recent studies in the Clare Valley, South Australia; Atherton Tablelands, Queensland; and Wagga Wagga, NSW.

Aquifer Characterization Techniques

Aquifer Characterization Techniques PDF Author: Robert G. Maliva
Publisher: Springer
ISBN: 3319321374
Category : Science
Languages : en
Pages : 632

Get Book Here

Book Description
This book presents an overview of techniques that are available to characterize sedimentary aquifers. Groundwater flow and solute transport are strongly affected by aquifer heterogeneity. Improved aquifer characterization can allow for a better conceptual understanding of aquifer systems, which can lead to more accurate groundwater models and successful water management solutions, such as contaminant remediation and managed aquifer recharge systems. This book has an applied perspective in that it considers the practicality of techniques for actual groundwater management and development projects in terms of costs, technical resources and expertise required, and investigation time. A discussion of the geological causes, types, and scales of aquifer heterogeneity is first provided. Aquifer characterization methods are then discussed, followed by chapters on data upscaling, groundwater modelling, and geostatistics. This book is a must for every practitioner, graduate student, or researcher dealing with aquifer characterization .

Hydraulic Properties of a Fractured-rock Aquifer, Lee Valley, San Diego County, California

Hydraulic Properties of a Fractured-rock Aquifer, Lee Valley, San Diego County, California PDF Author: C. A. Kaehler
Publisher:
ISBN:
Category : Groundwater
Languages : en
Pages : 104

Get Book Here

Book Description


Fractured Rock Hydraulics

Fractured Rock Hydraulics PDF Author: Fernando Olavo Franciss
Publisher: CRC Press
ISBN: 1439859159
Category : Technology & Engineering
Languages : en
Pages : 240

Get Book Here

Book Description
Uniquely devoted to hard and fractured rock hydraulics, this advanced-level introduction provides tools to solve practical engineering problems. Chapter I covers the fundamentals of fractured rock hydraulics under a tensor approach. Chapter II presents some key concepts about approximate solutions. Chapter III discuss a few data analysis techniques applied to groundwater modeling. Chapter IV presents unique 3D finite difference algorithms to simulate practical problems concerning the hydraulic behavior of saturated, heterogeneous and randomly fractured rock masses without restriction to the geometry and properties of their discontinuities. Supported by examples, cases, illustrations and references, this book is intended for professionals and researchers in hydrogeology, engineering geology, petroleum reservoir, rock and hydraulic engineering. Its explanatory nature allows its use as a textbook for advanced students.