Urban flood forecasting using high resolution radar data

Urban flood forecasting using high resolution radar data PDF Author: A.D. Teklesadik
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description

Urban flood forecasting using high resolution radar data

Urban flood forecasting using high resolution radar data PDF Author: A.D. Teklesadik
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Urban Pluvial Flood Forecasting

Urban Pluvial Flood Forecasting PDF Author: Nuno Eduardo da Cruz Simoes
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Two main approaches to enhance urban pluvial flood prediction were developed and tested in this research: (1) short-term rainfall forecast based on rain gauge networks, and (2) customisation of urban drainage models to improve hydraulic simulation speed. Rain gauges and level gauges were installed in the Coimbra (Portugal) and Redbridge (UK) catchment areas. The collected data was used to test and validate the approaches developed. When radar data is not available urban pluvial flooding forecasting can be based on networks of rain gauges. Improvements were made in the Support Vector Machine (SVM) technique to extrapolate rainfall time series. These improvements are: enhancing SVM prediction using Singular Spectrum Analysis (SSA) for pre-processing data; combining SSA and SVM with a statistical analysis that gives stochastic results. A method that integrates the SVM and Cascade-based downscaling techniques was also developed to carry out high-resolution (5-min) precipitation forecasting with longer lead time. Tests carried out with historical data showed that the new stochastic approach was useful for estimating the level of confidence of the rainfall forecast. The integration of the cascade method demonstrates the possibility of generating high-resolution rainfall forecasts with longer lead time. Tests carried out with the collected data showed that water level in sewers can be predicted: 30 minutes in advance (in Coimbra), and 45 minutes in advance (in Redbridge). A method for simplifying 1D1D networks is presented that increases computational speed while maintaining good accuracy. A new hybrid model concept was developed which combines 1D1D and 1D2D approaches in the same model to achieve a balance between runtime and accuracy. While the 1D2D model runs in about 45 minutes in Redbridge, the 1D1D and the hybrid models both run in less than 5 minutes, making this new model suitable for flood forecasting.

Rainfall-runoff Modelling In Gauged And Ungauged Catchments

Rainfall-runoff Modelling In Gauged And Ungauged Catchments PDF Author: Thorsten Wagener
Publisher: World Scientific
ISBN: 1783260661
Category : Science
Languages : en
Pages : 333

Get Book Here

Book Description
This important monograph is based on the results of a study on the identification of conceptual lumped rainfall-runoff models for gauged and ungauged catchments. The task of model identification remains difficult despite decades of research. A detailed problem analysis and an extensive review form the basis for the development of a MatlabĀ® modelling toolkit consisting of two components: a Rainfall-Runoff Modelling Toolbox (RRMT) and a Monte Carlo Analysis Toolbox (MCAT). These are subsequently applied to study the tasks of model identification and evaluation. A novel dynamic identifiability approach has been developed for the gauged catchment case. The theory underlying the application of rainfall-runoff models for predictions in ungauged catchments is studied, problems are highlighted and promising ways to move forward are investigated. Modelling frameworks for both gauged and ungauged cases are developed. This book presents the first extensive treatment of rainfall-runoff model identification in gauged and ungauged catchments.

Urban Meteorology

Urban Meteorology PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309252202
Category : Science
Languages : en
Pages : 190

Get Book Here

Book Description
According to the United Nations, three out of five people will be living in cities worldwide by the year 2030. The United States continues to experience urbanization with its vast urban corridors on the east and west coasts. Although urban weather is driven by large synoptic and meso-scale features, weather events unique to the urban environment arise from the characteristics of the typical urban setting, such as large areas covered by buildings of a variety of heights; paved streets and parking areas; means to supply electricity, natural gas, water, and raw materials; and generation of waste heat and materials. Urban Meteorology: Forecasting, Monitoring, and Meeting Users' Needs is based largely on the information provided at a Board on Atmospheric Sciences and Climate community workshop. This book describes the needs for end user communities, focusing in particular on needs that are not being met by current urban-level forecasting and monitoring. Urban Meteorology also describes current and emerging meteorological forecasting and monitoring capabilities that have had and will likely have the most impact on urban areas, some of which are not being utilized by the relevant end user communities. Urban Meteorology explains that users of urban meteorological information need high-quality information available in a wide variety of formats that foster its use and within time constraints set by users' decision processes. By advancing the science and technology related to urban meteorology with input from key end user communities, urban meteorologists can better meet the needs of diverse end users. To continue the advancement within the field of urban meteorology, there are both short-term needs-which might be addressed with small investments but promise large, quick returns-as well as future challenges that could require significant efforts and investments.

The Estimation of Rainfall for Flood Forecasting Using Radar and Rain Gage Data

The Estimation of Rainfall for Flood Forecasting Using Radar and Rain Gage Data PDF Author: William J. Charley
Publisher:
ISBN:
Category : Flood forecasting
Languages : en
Pages : 14

Get Book Here

Book Description


Flood Forecasting

Flood Forecasting PDF Author: Thomas E. Adams
Publisher: Academic Press
ISBN: 0128018593
Category : Nature
Languages : en
Pages : 485

Get Book Here

Book Description
Flood Forecasting: A Global Perspective describes flood forecast systems and operations as they currently exist at national and regional centers around the globe, focusing on the technical aspects of flood forecast systems. This book includes the details of data flow, what data is used, quality control, the hydrologic and hydraulic models used, and the unique problems of each country or system, such as glacial dam failures, ice jams, sparse data, and ephemeral streams and rivers. Each chapter describes the system, including details about its strengths and weaknesses, and covers lessons learned. This helpful resource facilitates sharing knowledge that will lead to improvements of existing systems and provides a valuable reference to those wishing to develop new forecast systems by drawing on best practices. Covers global systems allowing readers to see a worldwide perspective with different approaches used by existing flood forecast systems Provides historical coverage allowing readers to understand why forecast systems have developed as they have and to see how specific systems have dealt with common problems encountered Presents a vision of what appears to be the future of hydrologic forecasting and difficulties facing hydrologic forecasting Provides a helpful resource to facilitate improvements to existing systems based on a best practices approach

Flood Forecasting Using Machine Learning Methods

Flood Forecasting Using Machine Learning Methods PDF Author: Fi-John Chang
Publisher: MDPI
ISBN: 3038975486
Category : Technology & Engineering
Languages : en
Pages : 376

Get Book Here

Book Description
Nowadays, the degree and scale of flood hazards has been massively increasing as a result of the changing climate, and large-scale floods jeopardize lives and properties, causing great economic losses, in the inundation-prone areas of the world. Early flood warning systems are promising countermeasures against flood hazards and losses. A collaborative assessment according to multiple disciplines, comprising hydrology, remote sensing, and meteorology, of the magnitude and impacts of flood hazards on inundation areas significantly contributes to model the integrity and precision of flood forecasting. Methodologically oriented countermeasures against flood hazards may involve the forecasting of reservoir inflows, river flows, tropical cyclone tracks, and flooding at different lead times and/or scales. Analyses of impacts, risks, uncertainty, resilience, and scenarios coupled with policy-oriented suggestions will give information for flood hazard mitigation. Emerging advances in computing technologies coupled with big-data mining have boosted data-driven applications, among which Machine Learning technology, with its flexibility and scalability in pattern extraction, has modernized not only scientific thinking but also predictive applications. This book explores recent Machine Learning advances on flood forecast and management in a timely manner and presents interdisciplinary approaches to modelling the complexity of flood hazards-related issues, with contributions to integrative solutions from a local, regional or global perspective.

Flash Flood Forecasting Over Complex Terrain

Flash Flood Forecasting Over Complex Terrain PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309093163
Category : Science
Languages : en
Pages : 206

Get Book Here

Book Description
The nation's network of more than 130 Next Generation Radars (NEXRADs) is used to detect wind and precipitation to help National Weather Service forecasters monitor and predict flash floods and other storms. This book assesses the performance of the Sulphur Mountain NEXRAD in Southern California, which has been scrutinized for its ability to detect precipitation in the atmosphere below 6000 feet. The book finds that the Sulphur Mountain NEXRAD provides crucial coverage of the lower atmosphere and is appropriately situated to assist the Los Angeles-Oxnard National Weather Service Forecast Office in successfully forecasting and warning of flash floods. The book concludes that, in general, NEXRAD technology is effective in mountainous terrain but can be improved.

Toward High-resolution Flood Forecasting for Large Urban Areas

Toward High-resolution Flood Forecasting for Large Urban Areas PDF Author: Behzad Nazari
Publisher:
ISBN:
Category : Flood forecasting
Languages : en
Pages : 151

Get Book Here

Book Description
The ability to forecast flow, depth, and velocity in flooding events is one of the most important needs in highly populated urban areas. Urbanization and climate change highlight the necessity to understand and accurately predict water-related hazards in urban areas due to extreme precipitation. Towards that end, this study initially assesses the impact of changes in precipitation magnitude and imperviousness on urban inundation in a flooding prone urban catchment in the Dallas-Fort Worth Metroplex. Consequently, this study focuses on identifying potential alternatives to the conventional inundation models to improve operational viability of real-time flood forecasting in urban areas by downscaling coarse-resolution model output. Taking advantage of high-resolutions physiographic information, the problem is then transformed into developing efficient methods for routing flow in a network of 1D channels to represent sub-grid variability of hydraulic parameters within coarse 2D cells. Accordingly, two existing methods for such a routing problem are discussed, i.e., the diffusion wave routing and nonlinear routing with power-law storage functions. Each of the aforementioned methods is then solved innovatively to improve their efficiency for real-time routing of flow through many small streams quickly over a large area. In this work, two new methods for solving the 1-dimensional linear diffusion wave equation for finite domain is presented. Referred to as the Continuous Time Discrete Space (CTDS) methods, they yield explicit symbolic expressions for time-continuous solutions at discrete points in space. As such, the methods provide a powerful tool for very easily obtaining accurate diffusive wave solutions in lieu of numerical integration when predictions are desired only at specific locations along the channel. The proposed methods are easy to implement and may be used in a variety of routing applications where accurate explicit symbolic solutions are desired for linear advection-diffusion at specific locations. Also, a new direct solution for nonlinear reservoir routing with a general power-law storage function is presented. The resulting implicit solution is expressed in terms of the incomplete Beta function and is valid for inflow hydrographs that may be approximated by a series of pulses of finite duration. A separate solution for zero inflow representing recession is also presented. The new analytical solution extends the previous results reported in the literature which provide direct solutions only for certain exponents in the power-law storage function. In addition to the wide spectrum of applications that require modeling of nonlinear reservoirs or open channels, the direct solution may also be used for physically-based semi-distributed routing of hillslope flow following simplification of the flow paths as a dendritic network of nonlinear reservoirs. The proposed solutions offer new pathways for simple and efficient modeling of flood waves in real-world applications with minimal computational effort that makes them suitable candidates for flood forecasting in large urban areas.

Atmospheric Modeling, Data Assimilation and Predictability

Atmospheric Modeling, Data Assimilation and Predictability PDF Author: Eugenia Kalnay
Publisher: Cambridge University Press
ISBN: 9780521796293
Category : Mathematics
Languages : en
Pages : 368

Get Book Here

Book Description
This book, first published in 2002, is a graduate-level text on numerical weather prediction, including atmospheric modeling, data assimilation and predictability.