Universal Time-Series Forecasting with Mixture Predictors

Universal Time-Series Forecasting with Mixture Predictors PDF Author: Daniil Ryabko
Publisher: Springer Nature
ISBN: 3030543048
Category : Computers
Languages : en
Pages : 91

Get Book Here

Book Description
The author considers the problem of sequential probability forecasting in the most general setting, where the observed data may exhibit an arbitrary form of stochastic dependence. All the results presented are theoretical, but they concern the foundations of some problems in such applied areas as machine learning, information theory and data compression.

Universal Time-Series Forecasting with Mixture Predictors

Universal Time-Series Forecasting with Mixture Predictors PDF Author: Daniil Ryabko
Publisher: Springer Nature
ISBN: 3030543048
Category : Computers
Languages : en
Pages : 91

Get Book Here

Book Description
The author considers the problem of sequential probability forecasting in the most general setting, where the observed data may exhibit an arbitrary form of stochastic dependence. All the results presented are theoretical, but they concern the foundations of some problems in such applied areas as machine learning, information theory and data compression.

An Introduction to Universal Artificial Intelligence

An Introduction to Universal Artificial Intelligence PDF Author: Marcus Hutter
Publisher: CRC Press
ISBN: 1003821979
Category : Computers
Languages : en
Pages : 517

Get Book Here

Book Description
An Introduction to Universal Artificial Intelligence provides the formal underpinning of what it means for an agent to act intelligently in an unknown environment. First presented in Universal Algorithmic Intelligence (Hutter, 2000), UAI offers a framework in which virtually all AI problems can be formulated, and a theory of how to solve them. UAI unifies ideas from sequential decision theory, Bayesian inference, and algorithmic information theory to construct AIXI, an optimal reinforcement learning agent that learns to act optimally in unknown environments. AIXI is the theoretical gold standard for intelligent behavior. The book covers both the theoretical and practical aspects of UAI. Bayesian updating can be done efficiently with context tree weighting, and planning can be approximated by sampling with Monte Carlo tree search. It provides algorithms for the reader to implement, and experimental results to compare against. These algorithms are used to approximate AIXI. The book ends with a philosophical discussion of Artificial General Intelligence: Can super-intelligent agents even be constructed? Is it inevitable that they will be constructed, and what are the potential consequences? This text is suitable for late undergraduate students. It provides an extensive chapter to fill in the required mathematics, probability, information, and computability theory background.

SAS for Forecasting Time Series, Third Edition

SAS for Forecasting Time Series, Third Edition PDF Author: John C. Brocklebank, Ph.D.
Publisher: SAS Institute
ISBN: 1629605441
Category : Computers
Languages : en
Pages : 616

Get Book Here

Book Description
To use statistical methods and SAS applications to forecast the future values of data taken over time, you need only follow this thoroughly updated classic on the subject. With this third edition of SAS for Forecasting Time Series, intermediate-to-advanced SAS users—such as statisticians, economists, and data scientists—can now match the most sophisticated forecasting methods to the most current SAS applications. Starting with fundamentals, this new edition presents methods for modeling both univariate and multivariate data taken over time. From the well-known ARIMA models to unobserved components, methods that span the range from simple to complex are discussed and illustrated. Many of the newer methods are variations on the basic ARIMA structures. Completely updated, this new edition includes fresh, interesting business situations and data sets, and new sections on these up-to-date statistical methods: ARIMA models Vector autoregressive models Exponential smoothing models Unobserved component and state-space models Seasonal adjustment Spectral analysis Focusing on application, this guide teaches a wide range of forecasting techniques by example. The examples provide the statistical underpinnings necessary to put the methods into practice. The following up-to-date SAS applications are covered in this edition: The ARIMA procedure The AUTOREG procedure The VARMAX procedure The ESM procedure The UCM and SSM procedures The X13 procedure The SPECTRA procedure SAS Forecast Studio Each SAS application is presented with explanation of its strengths, weaknesses, and best uses. Even users of automated forecasting systems will benefit from this knowledge of what is done and why. Moreover, the accompanying examples can serve as templates that you easily adjust to fit your specific forecasting needs. This book is part of the SAS Press program.

Financial Decision Making Using Computational Intelligence

Financial Decision Making Using Computational Intelligence PDF Author: Michael Doumpos
Publisher: Springer Science & Business Media
ISBN: 1461437733
Category : Business & Economics
Languages : en
Pages : 336

Get Book Here

Book Description
The increasing complexity of financial problems and the enormous volume of financial data often make it difficult to apply traditional modeling and algorithmic procedures. In this context, the field of computational intelligence provides an arsenal of particularly useful techniques. These techniques include new modeling tools for decision making under risk and uncertainty, data mining techniques for analyzing complex data bases, and powerful algorithms for complex optimization problems. Computational intelligence has also evolved rapidly over the past few years and it is now one of the most active fields in operations research and computer science. This volume presents the recent advances of the use of computation intelligence in financial decision making. The book covers all the major areas of computational intelligence and a wide range of problems in finance, such as portfolio optimization, credit risk analysis, asset valuation, financial forecasting, and trading.

Time Series Prediction

Time Series Prediction PDF Author: Andreas S. Weigend
Publisher: Routledge
ISBN: 042997227X
Category : Social Science
Languages : en
Pages : 665

Get Book Here

Book Description
The book is a summary of a time series forecasting competition that was held a number of years ago. It aims to provide a snapshot of the range of new techniques that are used to study time series, both as a reference for experts and as a guide for novices.

International Aerospace Abstracts

International Aerospace Abstracts PDF Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 1042

Get Book Here

Book Description


Complex Systems in Finance and Econometrics

Complex Systems in Finance and Econometrics PDF Author: Robert A. Meyers
Publisher: Springer Science & Business Media
ISBN: 1441977007
Category : Business & Economics
Languages : en
Pages : 919

Get Book Here

Book Description
Finance, Econometrics and System Dynamics presents an overview of the concepts and tools for analyzing complex systems in a wide range of fields. The text integrates complexity with deterministic equations and concepts from real world examples, and appeals to a broad audience.

Time Series Analysis

Time Series Analysis PDF Author: Jonathan D. Cryer
Publisher: Springer Science & Business Media
ISBN: 0387759581
Category : Business & Economics
Languages : en
Pages : 501

Get Book Here

Book Description
This book presents an accessible approach to understanding time series models and their applications. The ideas and methods are illustrated with both real and simulated data sets. A unique feature of this edition is its integration with the R computing environment.

Mathematics and Computer Science

Mathematics and Computer Science PDF Author: Daniele Gardy
Publisher: Birkhäuser
ISBN: 3034884052
Category : Mathematics
Languages : en
Pages : 337

Get Book Here

Book Description
This is the first book where mathematics and computer science are directly confronted and joined to tackle intricate problems in computer science with deep mathematical approaches. It contains a collection of refereed papers presented at the Colloquium on Mathematics and Computer Science held at the University of Versailles-St-Quentin on September 18-20, 2000. The colloquium was a meeting place for researchers in mathematics and computer science and thus an important opportunity to exchange ideas and points of view, and to present new approaches and new results in the common areas such as algorithms analysis, trees, combinatorics, optimization, performance evaluation and probabilities. The book is intended for a large public in applied mathematics, discrete mathematics and computer science, including researchers, teachers, graduate students and engineers. It provides an overview of the current questions in computer science and related modern mathematical methods. The range of applications is very wide and reaches beyond computer science.

Algorithmic Learning in a Random World

Algorithmic Learning in a Random World PDF Author: Vladimir Vovk
Publisher: Springer Science & Business Media
ISBN: 9780387001524
Category : Computers
Languages : en
Pages : 344

Get Book Here

Book Description
Algorithmic Learning in a Random World describes recent theoretical and experimental developments in building computable approximations to Kolmogorov's algorithmic notion of randomness. Based on these approximations, a new set of machine learning algorithms have been developed that can be used to make predictions and to estimate their confidence and credibility in high-dimensional spaces under the usual assumption that the data are independent and identically distributed (assumption of randomness). Another aim of this unique monograph is to outline some limits of predictions: The approach based on algorithmic theory of randomness allows for the proof of impossibility of prediction in certain situations. The book describes how several important machine learning problems, such as density estimation in high-dimensional spaces, cannot be solved if the only assumption is randomness.