Author: Randall E. Schumacker
Publisher: Psychology Press
ISBN: 1135657033
Category : Psychology
Languages : en
Pages : 407
Book Description
Written as a supplemental text for an introductory or intermediate statistics course, this book is organized along the lines of many popular statistics texts. The chapters provide a good conceptual understanding of basic statistics and include exercises that use S-PLUS simulation programs. Each chapter lists a set of objectives and a summary. The book offers a rich insight into how probability has shaped statistical procedures in the behavioral sciences, as well as a brief history behind the creation of various statistics. Computational skills are kept to a minimum by including S-PLUS programs that run the exercises in the chapters. Students are not required to master the writing of S-PLUS programs, but explanations of how the programs work and program output are included in each chapter. S-PLUS is an advanced statistical package that has an extensive library of functions, which offer flexibility in writing customized routines. The S-PLUS functions provide the capability of programming object and dialog windows, which are commonly used in Windows software applications. The S-PLUS program also contains pull-down menus for the statistical analysis of data. A ZIP file containing programs that work in S-PLUS 6.2 for use with this book is available for download from http://www.psypress.com/resources/9780805836233.zip - please note that these scripts will only run in S-PLUS 6.2 and not later versions due to changes in the programming language syntax.
Understanding Statistical Concepts Using S-plus
Author: Randall E. Schumacker
Publisher: Psychology Press
ISBN: 1135657033
Category : Psychology
Languages : en
Pages : 407
Book Description
Written as a supplemental text for an introductory or intermediate statistics course, this book is organized along the lines of many popular statistics texts. The chapters provide a good conceptual understanding of basic statistics and include exercises that use S-PLUS simulation programs. Each chapter lists a set of objectives and a summary. The book offers a rich insight into how probability has shaped statistical procedures in the behavioral sciences, as well as a brief history behind the creation of various statistics. Computational skills are kept to a minimum by including S-PLUS programs that run the exercises in the chapters. Students are not required to master the writing of S-PLUS programs, but explanations of how the programs work and program output are included in each chapter. S-PLUS is an advanced statistical package that has an extensive library of functions, which offer flexibility in writing customized routines. The S-PLUS functions provide the capability of programming object and dialog windows, which are commonly used in Windows software applications. The S-PLUS program also contains pull-down menus for the statistical analysis of data. A ZIP file containing programs that work in S-PLUS 6.2 for use with this book is available for download from http://www.psypress.com/resources/9780805836233.zip - please note that these scripts will only run in S-PLUS 6.2 and not later versions due to changes in the programming language syntax.
Publisher: Psychology Press
ISBN: 1135657033
Category : Psychology
Languages : en
Pages : 407
Book Description
Written as a supplemental text for an introductory or intermediate statistics course, this book is organized along the lines of many popular statistics texts. The chapters provide a good conceptual understanding of basic statistics and include exercises that use S-PLUS simulation programs. Each chapter lists a set of objectives and a summary. The book offers a rich insight into how probability has shaped statistical procedures in the behavioral sciences, as well as a brief history behind the creation of various statistics. Computational skills are kept to a minimum by including S-PLUS programs that run the exercises in the chapters. Students are not required to master the writing of S-PLUS programs, but explanations of how the programs work and program output are included in each chapter. S-PLUS is an advanced statistical package that has an extensive library of functions, which offer flexibility in writing customized routines. The S-PLUS functions provide the capability of programming object and dialog windows, which are commonly used in Windows software applications. The S-PLUS program also contains pull-down menus for the statistical analysis of data. A ZIP file containing programs that work in S-PLUS 6.2 for use with this book is available for download from http://www.psypress.com/resources/9780805836233.zip - please note that these scripts will only run in S-PLUS 6.2 and not later versions due to changes in the programming language syntax.
Statistical Computing
Author: Michael J. Crawley
Publisher: Wiley
ISBN: 9780471560401
Category : Computers
Languages : en
Pages : 772
Book Description
Many statistical modelling and data analysis techniques can be difficult to grasp and apply, and it is often necessary to use computer software to aid the implementation of large data sets and to obtain useful results. S-Plus is recognised as one of the most powerful and flexible statistical software packages, and it enables the user to apply a number of statistical methods, ranging from simple regression to time series or multivariate analysis. This text offers extensive coverage of many basic and more advanced statistical methods, concentrating on graphical inspection, and features step-by-step instructions to help the non-statistician to understand fully the methodology. * Extensive coverage of basic, intermediate and advanced statistical methods * Uses S-Plus, which is recognised globally as one of the most powerful and flexible statistical software packages * Emphasis is on graphical data inspection, parameter estimation and model criticism * Features hundreds of worked examples to illustrate the techniques described * Accessible to scientists from a large number of disciplines with minimal statistical knowledge * Written by a leading figure in the field, who runs a number of successful international short courses * Accompanied by a Web site featuring worked examples, data sets, exercises and solutions A valuable reference resource for researchers, professionals, lecturers and students from statistics, the life sciences, medicine, engineering, economics and the social sciences.
Publisher: Wiley
ISBN: 9780471560401
Category : Computers
Languages : en
Pages : 772
Book Description
Many statistical modelling and data analysis techniques can be difficult to grasp and apply, and it is often necessary to use computer software to aid the implementation of large data sets and to obtain useful results. S-Plus is recognised as one of the most powerful and flexible statistical software packages, and it enables the user to apply a number of statistical methods, ranging from simple regression to time series or multivariate analysis. This text offers extensive coverage of many basic and more advanced statistical methods, concentrating on graphical inspection, and features step-by-step instructions to help the non-statistician to understand fully the methodology. * Extensive coverage of basic, intermediate and advanced statistical methods * Uses S-Plus, which is recognised globally as one of the most powerful and flexible statistical software packages * Emphasis is on graphical data inspection, parameter estimation and model criticism * Features hundreds of worked examples to illustrate the techniques described * Accessible to scientists from a large number of disciplines with minimal statistical knowledge * Written by a leading figure in the field, who runs a number of successful international short courses * Accompanied by a Web site featuring worked examples, data sets, exercises and solutions A valuable reference resource for researchers, professionals, lecturers and students from statistics, the life sciences, medicine, engineering, economics and the social sciences.
Understanding Statistics and Experimental Design
Author: Michael H. Herzog
Publisher: Springer
ISBN: 3030034992
Category : Science
Languages : en
Pages : 146
Book Description
This open access textbook provides the background needed to correctly use, interpret and understand statistics and statistical data in diverse settings. Part I makes key concepts in statistics readily clear. Parts I and II give an overview of the most common tests (t-test, ANOVA, correlations) and work out their statistical principles. Part III provides insight into meta-statistics (statistics of statistics) and demonstrates why experiments often do not replicate. Finally, the textbook shows how complex statistics can be avoided by using clever experimental design. Both non-scientists and students in Biology, Biomedicine and Engineering will benefit from the book by learning the statistical basis of scientific claims and by discovering ways to evaluate the quality of scientific reports in academic journals and news outlets.
Publisher: Springer
ISBN: 3030034992
Category : Science
Languages : en
Pages : 146
Book Description
This open access textbook provides the background needed to correctly use, interpret and understand statistics and statistical data in diverse settings. Part I makes key concepts in statistics readily clear. Parts I and II give an overview of the most common tests (t-test, ANOVA, correlations) and work out their statistical principles. Part III provides insight into meta-statistics (statistics of statistics) and demonstrates why experiments often do not replicate. Finally, the textbook shows how complex statistics can be avoided by using clever experimental design. Both non-scientists and students in Biology, Biomedicine and Engineering will benefit from the book by learning the statistical basis of scientific claims and by discovering ways to evaluate the quality of scientific reports in academic journals and news outlets.
Statistical Data Analysis Explained
Author: Clemens Reimann
Publisher: John Wiley & Sons
ISBN: 1119965284
Category : Science
Languages : en
Pages : 380
Book Description
Few books on statistical data analysis in the natural sciences are written at a level that a non-statistician will easily understand. This is a book written in colloquial language, avoiding mathematical formulae as much as possible, trying to explain statistical methods using examples and graphics instead. To use the book efficiently, readers should have some computer experience. The book starts with the simplest of statistical concepts and carries readers forward to a deeper and more extensive understanding of the use of statistics in environmental sciences. The book concerns the application of statistical and other computer methods to the management, analysis and display of spatial data. These data are characterised by including locations (geographic coordinates), which leads to the necessity of using maps to display the data and the results of the statistical methods. Although the book uses examples from applied geochemistry, and a large geochemical survey in particular, the principles and ideas equally well apply to other natural sciences, e.g., environmental sciences, pedology, hydrology, geography, forestry, ecology, and health sciences/epidemiology. The book is unique because it supplies direct access to software solutions (based on R, the Open Source version of the S-language for statistics) for applied environmental statistics. For all graphics and tables presented in the book, the R-scripts are provided in the form of executable R-scripts. In addition, a graphical user interface for R, called DAS+R, was developed for convenient, fast and interactive data analysis. Statistical Data Analysis Explained: Applied Environmental Statistics with R provides, on an accompanying website, the software to undertake all the procedures discussed, and the data employed for their description in the book.
Publisher: John Wiley & Sons
ISBN: 1119965284
Category : Science
Languages : en
Pages : 380
Book Description
Few books on statistical data analysis in the natural sciences are written at a level that a non-statistician will easily understand. This is a book written in colloquial language, avoiding mathematical formulae as much as possible, trying to explain statistical methods using examples and graphics instead. To use the book efficiently, readers should have some computer experience. The book starts with the simplest of statistical concepts and carries readers forward to a deeper and more extensive understanding of the use of statistics in environmental sciences. The book concerns the application of statistical and other computer methods to the management, analysis and display of spatial data. These data are characterised by including locations (geographic coordinates), which leads to the necessity of using maps to display the data and the results of the statistical methods. Although the book uses examples from applied geochemistry, and a large geochemical survey in particular, the principles and ideas equally well apply to other natural sciences, e.g., environmental sciences, pedology, hydrology, geography, forestry, ecology, and health sciences/epidemiology. The book is unique because it supplies direct access to software solutions (based on R, the Open Source version of the S-language for statistics) for applied environmental statistics. For all graphics and tables presented in the book, the R-scripts are provided in the form of executable R-scripts. In addition, a graphical user interface for R, called DAS+R, was developed for convenient, fast and interactive data analysis. Statistical Data Analysis Explained: Applied Environmental Statistics with R provides, on an accompanying website, the software to undertake all the procedures discussed, and the data employed for their description in the book.
Statistical Analysis of Financial Data in S-Plus
Author: René Carmona
Publisher: Springer Science & Business Media
ISBN: 0387218246
Category : Business & Economics
Languages : en
Pages : 456
Book Description
This is the first book at the graduate textbook level to discuss analyzing financial data with S-PLUS. Its originality lies in the introduction of tools for the estimation and simulation of heavy tail distributions and copulas, the computation of measures of risk, and the principal component analysis of yield curves. The book is aimed at undergraduate students in financial engineering; master students in finance and MBA's, and to practitioners with financial data analysis concerns.
Publisher: Springer Science & Business Media
ISBN: 0387218246
Category : Business & Economics
Languages : en
Pages : 456
Book Description
This is the first book at the graduate textbook level to discuss analyzing financial data with S-PLUS. Its originality lies in the introduction of tools for the estimation and simulation of heavy tail distributions and copulas, the computation of measures of risk, and the principal component analysis of yield curves. The book is aimed at undergraduate students in financial engineering; master students in finance and MBA's, and to practitioners with financial data analysis concerns.
A Beginner's Guide to Structural Equation Modeling
Author: Tiffany A. Whittaker
Publisher: Routledge
ISBN: 1000569748
Category : Psychology
Languages : en
Pages : 419
Book Description
A Beginner’s Guide to Structural Equation Modeling, fifth edition, has been redesigned with consideration of a true beginner in structural equation modeling (SEM) in mind. The book covers introductory through intermediate topics in SEM in more detail than in any previous edition. All of the chapters that introduce models in SEM have been expanded to include easy-to-follow, step-by-step guidelines that readers can use when conducting their own SEM analyses. These chapters also include examples of tables to include in results sections that readers may use as templates when writing up the findings from their SEM analyses. The models that are illustrated in the text will allow SEM beginners to conduct, interpret, and write up analyses for observed variable path models to full structural models, up to testing higher order models as well as multiple group modeling techniques. Updated information about methodological research in relevant areas will help students and researchers be more informed readers of SEM research. The checklist of SEM considerations when conducting and reporting SEM analyses is a collective set of requirements that will help improve the rigor of SEM analyses. This book is intended for true beginners in SEM and is designed for introductory graduate courses in SEM taught in psychology, education, business, and the social and healthcare sciences. This book also appeals to researchers and faculty in various disciplines. Prerequisites include correlation and regression methods.
Publisher: Routledge
ISBN: 1000569748
Category : Psychology
Languages : en
Pages : 419
Book Description
A Beginner’s Guide to Structural Equation Modeling, fifth edition, has been redesigned with consideration of a true beginner in structural equation modeling (SEM) in mind. The book covers introductory through intermediate topics in SEM in more detail than in any previous edition. All of the chapters that introduce models in SEM have been expanded to include easy-to-follow, step-by-step guidelines that readers can use when conducting their own SEM analyses. These chapters also include examples of tables to include in results sections that readers may use as templates when writing up the findings from their SEM analyses. The models that are illustrated in the text will allow SEM beginners to conduct, interpret, and write up analyses for observed variable path models to full structural models, up to testing higher order models as well as multiple group modeling techniques. Updated information about methodological research in relevant areas will help students and researchers be more informed readers of SEM research. The checklist of SEM considerations when conducting and reporting SEM analyses is a collective set of requirements that will help improve the rigor of SEM analyses. This book is intended for true beginners in SEM and is designed for introductory graduate courses in SEM taught in psychology, education, business, and the social and healthcare sciences. This book also appeals to researchers and faculty in various disciplines. Prerequisites include correlation and regression methods.
A Beginner's Guide to Structural Equation Modeling
Author: Randall E. Schumacker
Publisher: Routledge
ISBN: 1317608097
Category : Psychology
Languages : en
Pages : 375
Book Description
Noted for its crystal clear explanations, this book is considered the most comprehensive introductory text to structural equation modeling (SEM). Noted for its thorough review of basic concepts and a wide variety of models, this book better prepares readers to apply SEM to a variety of research questions. Programming details and the use of algebra are kept to a minimum to help readers easily grasp the concepts so they can conduct their own analysis and critique related research. Featuring a greater emphasis on statistical power and model validation than other texts, each chapter features key concepts, examples from various disciplines, tables and figures, a summary, and exercises. Highlights of the extensively revised 4th edition include: -Uses different SEM software (not just Lisrel) including Amos, EQS, LISREL, Mplus, and R to demonstrate applications. -Detailed introduction to the statistical methods related to SEM including correlation, regression, and factor analysis to maximize understanding (Chs. 1 – 6). -The 5 step approach to modeling data (specification, identification, estimation, testing, and modification) is now covered in more detail and prior to the modeling chapters to provide a more coherent view of how to create models and interpret results (ch. 7). -More discussion of hypothesis testing, power, sampling, effect sizes, and model fit, critical topics for beginning modelers (ch. 7). - Each model chapter now focuses on one technique to enhance understanding by providing more description, assumptions, and interpretation of results, and an exercise related to analysis and output (Chs. 8 -15). -The use of SPSS AMOS diagrams to describe the theoretical models. -The key features of each of the software packages (Ch. 1). -Guidelines for reporting SEM research (Ch. 16). -www.routledge.com/9781138811935 which provides access to data sets that can be used with any program, links to other SEM examples, related readings, and journal articles, and more. Reorganized, the new edition begins with a more detailed introduction to SEM including the various software packages available, followed by chapters on data entry and editing, and correlation which is critical to understanding how missing data, non-normality, measurement, and restriction of range in scores affects SEM analysis. Multiple regression, path, and factor models are then reviewed and exploratory and confirmatory factor analysis is introduced. These chapters demonstrate how observed variables share variance in defining a latent variables and introduce how measurement error can be removed from observed variables. Chapter 7 details the 5 SEM modeling steps including model specification, identification, estimation, testing, and modification along with a discussion of hypothesis testing and the related issues of power, and sample and effect sizes.Chapters 8 to 15 provide comprehensive introductions to different SEM models including Multiple Group, Second-Order CFA, Dynamic Factor, Multiple-Indicator Multiple-Cause, Mixed Variable and Mixture, Multi-Level, Latent Growth, and SEM Interaction Models. Each of the 5 SEM modeling steps is explained for each model along with an application. Chapter exercises provide practice with and enhance understanding of the analysis of each model. The book concludes with a review of SEM guidelines for reporting research. Designed for introductory graduate courses in structural equation modeling, factor analysis, advanced, multivariate, or applied statistics, quantitative techniques, or statistics II taught in psychology, education, business, and the social and healthcare sciences, this practical book also appeals to researchers in these disciplines. Prerequisites include an introduction to intermediate statistics that covers correlation and regression principles.
Publisher: Routledge
ISBN: 1317608097
Category : Psychology
Languages : en
Pages : 375
Book Description
Noted for its crystal clear explanations, this book is considered the most comprehensive introductory text to structural equation modeling (SEM). Noted for its thorough review of basic concepts and a wide variety of models, this book better prepares readers to apply SEM to a variety of research questions. Programming details and the use of algebra are kept to a minimum to help readers easily grasp the concepts so they can conduct their own analysis and critique related research. Featuring a greater emphasis on statistical power and model validation than other texts, each chapter features key concepts, examples from various disciplines, tables and figures, a summary, and exercises. Highlights of the extensively revised 4th edition include: -Uses different SEM software (not just Lisrel) including Amos, EQS, LISREL, Mplus, and R to demonstrate applications. -Detailed introduction to the statistical methods related to SEM including correlation, regression, and factor analysis to maximize understanding (Chs. 1 – 6). -The 5 step approach to modeling data (specification, identification, estimation, testing, and modification) is now covered in more detail and prior to the modeling chapters to provide a more coherent view of how to create models and interpret results (ch. 7). -More discussion of hypothesis testing, power, sampling, effect sizes, and model fit, critical topics for beginning modelers (ch. 7). - Each model chapter now focuses on one technique to enhance understanding by providing more description, assumptions, and interpretation of results, and an exercise related to analysis and output (Chs. 8 -15). -The use of SPSS AMOS diagrams to describe the theoretical models. -The key features of each of the software packages (Ch. 1). -Guidelines for reporting SEM research (Ch. 16). -www.routledge.com/9781138811935 which provides access to data sets that can be used with any program, links to other SEM examples, related readings, and journal articles, and more. Reorganized, the new edition begins with a more detailed introduction to SEM including the various software packages available, followed by chapters on data entry and editing, and correlation which is critical to understanding how missing data, non-normality, measurement, and restriction of range in scores affects SEM analysis. Multiple regression, path, and factor models are then reviewed and exploratory and confirmatory factor analysis is introduced. These chapters demonstrate how observed variables share variance in defining a latent variables and introduce how measurement error can be removed from observed variables. Chapter 7 details the 5 SEM modeling steps including model specification, identification, estimation, testing, and modification along with a discussion of hypothesis testing and the related issues of power, and sample and effect sizes.Chapters 8 to 15 provide comprehensive introductions to different SEM models including Multiple Group, Second-Order CFA, Dynamic Factor, Multiple-Indicator Multiple-Cause, Mixed Variable and Mixture, Multi-Level, Latent Growth, and SEM Interaction Models. Each of the 5 SEM modeling steps is explained for each model along with an application. Chapter exercises provide practice with and enhance understanding of the analysis of each model. The book concludes with a review of SEM guidelines for reporting research. Designed for introductory graduate courses in structural equation modeling, factor analysis, advanced, multivariate, or applied statistics, quantitative techniques, or statistics II taught in psychology, education, business, and the social and healthcare sciences, this practical book also appeals to researchers in these disciplines. Prerequisites include an introduction to intermediate statistics that covers correlation and regression principles.
Classical Methods of Statistics
Author: Otto J.W.F. Kardaun
Publisher: Springer Science & Business Media
ISBN: 9783540211150
Category : Science
Languages : en
Pages : 416
Book Description
Classical Methods of Statistics is a guidebook combining theory and practical methods. It is especially conceived for graduate students and scientists who are interested in the applications of statistical methods to plasma physics. Thus it provides also concise information on experimental aspects of fusion-oriented plasma physics. In view of the first three basic chapters it can be fruitfully used by students majoring in probability theory and statistics. The first part deals with the mathematical foundation and framework of the subject. Some attention is given to the historical background. Exercises are added to help readers understand the underlying concepts. In the second part, two major case studies are presented which exemplify the areas of discriminant analysis and multivariate profile analysis, respectively. To introduce these case studies, an outline is provided of the context of magnetic plasma fusion research. In the third part an overview is given of statistical software; separate attention is devoted to SAS and S-PLUS. The final chapter presents several datasets and gives a description of their physical setting. Most of these datasets were assembled at the ASDEX Upgrade Tokamak. All of them are accompanied by exercises in form of guided (minor) case studies. The book concludes with translations of key concepts into several languages.
Publisher: Springer Science & Business Media
ISBN: 9783540211150
Category : Science
Languages : en
Pages : 416
Book Description
Classical Methods of Statistics is a guidebook combining theory and practical methods. It is especially conceived for graduate students and scientists who are interested in the applications of statistical methods to plasma physics. Thus it provides also concise information on experimental aspects of fusion-oriented plasma physics. In view of the first three basic chapters it can be fruitfully used by students majoring in probability theory and statistics. The first part deals with the mathematical foundation and framework of the subject. Some attention is given to the historical background. Exercises are added to help readers understand the underlying concepts. In the second part, two major case studies are presented which exemplify the areas of discriminant analysis and multivariate profile analysis, respectively. To introduce these case studies, an outline is provided of the context of magnetic plasma fusion research. In the third part an overview is given of statistical software; separate attention is devoted to SAS and S-PLUS. The final chapter presents several datasets and gives a description of their physical setting. Most of these datasets were assembled at the ASDEX Upgrade Tokamak. All of them are accompanied by exercises in form of guided (minor) case studies. The book concludes with translations of key concepts into several languages.
Learning Statistics Using R
Author: Randall E. Schumacker
Publisher: SAGE Publications
ISBN: 148332477X
Category : Social Science
Languages : en
Pages : 648
Book Description
Providing easy-to-use R script programs that teach descriptive statistics, graphing, and other statistical methods, Learning Statistics Using R shows readers how to run and utilize R, a free integrated statistical suite that has an extensive library of functions. Randall E. Schumacker’s comprehensive book describes in detail the processing of variables in statistical procedures. Covering a wide range of topics, from probability and sampling distribution to statistical theorems and chi-square, this introductory book helps readers learn not only how to use formulae to calculate statistics, but also how specific statistics fit into the overall research process. Learning Statistics Using R covers data input from vectors, arrays, matrices and data frames, as well as the input of data sets from SPSS, SAS, STATA and other software packages. Schumacker’s text provides the freedom to effectively calculate, manipulate, and graphically display data, using R, on different computer operating systems without the expense of commercial software. Learning Statistics Using R places statistics within the framework of conducting research, where statistical research hypotheses can be directly addressed. Each chapter includes discussion and explanations, tables and graphs, and R functions and outputs to enrich readers′ understanding of statistics through statistical computing and modeling.
Publisher: SAGE Publications
ISBN: 148332477X
Category : Social Science
Languages : en
Pages : 648
Book Description
Providing easy-to-use R script programs that teach descriptive statistics, graphing, and other statistical methods, Learning Statistics Using R shows readers how to run and utilize R, a free integrated statistical suite that has an extensive library of functions. Randall E. Schumacker’s comprehensive book describes in detail the processing of variables in statistical procedures. Covering a wide range of topics, from probability and sampling distribution to statistical theorems and chi-square, this introductory book helps readers learn not only how to use formulae to calculate statistics, but also how specific statistics fit into the overall research process. Learning Statistics Using R covers data input from vectors, arrays, matrices and data frames, as well as the input of data sets from SPSS, SAS, STATA and other software packages. Schumacker’s text provides the freedom to effectively calculate, manipulate, and graphically display data, using R, on different computer operating systems without the expense of commercial software. Learning Statistics Using R places statistics within the framework of conducting research, where statistical research hypotheses can be directly addressed. Each chapter includes discussion and explanations, tables and graphs, and R functions and outputs to enrich readers′ understanding of statistics through statistical computing and modeling.
Understanding and Applying Basic Statistical Methods Using R
Author: Rand R. Wilcox
Publisher: John Wiley & Sons
ISBN: 1119061415
Category : Social Science
Languages : en
Pages : 531
Book Description
Features a straightforward and concise resource for introductory statistical concepts, methods, and techniques using R Understanding and Applying Basic Statistical Methods Using R uniquely bridges the gap between advances in the statistical literature and methods routinely used by non-statisticians. Providing a conceptual basis for understanding the relative merits and applications of these methods, the book features modern insights and advances relevant to basic techniques in terms of dealing with non-normality, outliers, heteroscedasticity (unequal variances), and curvature. Featuring a guide to R, the book uses R programming to explore introductory statistical concepts and standard methods for dealing with known problems associated with classic techniques. Thoroughly class-room tested, the book includes sections that focus on either R programming or computational details to help the reader become acquainted with basic concepts and principles essential in terms of understanding and applying the many methods currently available. Covering relevant material from a wide range of disciplines, Understanding and Applying Basic Statistical Methods Using R also includes: Numerous illustrations and exercises that use data to demonstrate the practical importance of multiple perspectives Discussions on common mistakes such as eliminating outliers and applying standard methods based on means using the remaining data Detailed coverage on R programming with descriptions on how to apply both classic and more modern methods using R A companion website with the data and solutions to all of the exercises Understanding and Applying Basic Statistical Methods Using R is an ideal textbook for an undergraduate and graduate-level statistics courses in the science and/or social science departments. The book can also serve as a reference for professional statisticians and other practitioners looking to better understand modern statistical methods as well as R programming. Rand R. Wilcox, PhD, is Professor in the Department of Psychology at the University of Southern California, Fellow of the Association for Psychological Science, and an associate editor for four statistics journals. He is also a member of the International Statistical Institute. The author of more than 320 articles published in a variety of statistical journals, he is also the author eleven other books on statistics. Dr. Wilcox is creator of WRS (Wilcox’ Robust Statistics), which is an R package for performing robust statistical methods. His main research interest includes statistical methods, particularly robust methods for comparing groups and studying associations.
Publisher: John Wiley & Sons
ISBN: 1119061415
Category : Social Science
Languages : en
Pages : 531
Book Description
Features a straightforward and concise resource for introductory statistical concepts, methods, and techniques using R Understanding and Applying Basic Statistical Methods Using R uniquely bridges the gap between advances in the statistical literature and methods routinely used by non-statisticians. Providing a conceptual basis for understanding the relative merits and applications of these methods, the book features modern insights and advances relevant to basic techniques in terms of dealing with non-normality, outliers, heteroscedasticity (unequal variances), and curvature. Featuring a guide to R, the book uses R programming to explore introductory statistical concepts and standard methods for dealing with known problems associated with classic techniques. Thoroughly class-room tested, the book includes sections that focus on either R programming or computational details to help the reader become acquainted with basic concepts and principles essential in terms of understanding and applying the many methods currently available. Covering relevant material from a wide range of disciplines, Understanding and Applying Basic Statistical Methods Using R also includes: Numerous illustrations and exercises that use data to demonstrate the practical importance of multiple perspectives Discussions on common mistakes such as eliminating outliers and applying standard methods based on means using the remaining data Detailed coverage on R programming with descriptions on how to apply both classic and more modern methods using R A companion website with the data and solutions to all of the exercises Understanding and Applying Basic Statistical Methods Using R is an ideal textbook for an undergraduate and graduate-level statistics courses in the science and/or social science departments. The book can also serve as a reference for professional statisticians and other practitioners looking to better understand modern statistical methods as well as R programming. Rand R. Wilcox, PhD, is Professor in the Department of Psychology at the University of Southern California, Fellow of the Association for Psychological Science, and an associate editor for four statistics journals. He is also a member of the International Statistical Institute. The author of more than 320 articles published in a variety of statistical journals, he is also the author eleven other books on statistics. Dr. Wilcox is creator of WRS (Wilcox’ Robust Statistics), which is an R package for performing robust statistical methods. His main research interest includes statistical methods, particularly robust methods for comparing groups and studying associations.