Understanding Molecular Simulation

Understanding Molecular Simulation PDF Author: Daan Frenkel
Publisher: Elsevier
ISBN: 0080519989
Category : Science
Languages : en
Pages : 661

Get Book Here

Book Description
Understanding Molecular Simulation: From Algorithms to Applications explains the physics behind the "recipes" of molecular simulation for materials science. Computer simulators are continuously confronted with questions concerning the choice of a particular technique for a given application. A wide variety of tools exist, so the choice of technique requires a good understanding of the basic principles. More importantly, such understanding may greatly improve the efficiency of a simulation program. The implementation of simulation methods is illustrated in pseudocodes and their practical use in the case studies used in the text. Since the first edition only five years ago, the simulation world has changed significantly -- current techniques have matured and new ones have appeared. This new edition deals with these new developments; in particular, there are sections on: - Transition path sampling and diffusive barrier crossing to simulaterare events - Dissipative particle dynamic as a course-grained simulation technique - Novel schemes to compute the long-ranged forces - Hamiltonian and non-Hamiltonian dynamics in the context constant-temperature and constant-pressure molecular dynamics simulations - Multiple-time step algorithms as an alternative for constraints - Defects in solids - The pruned-enriched Rosenbluth sampling, recoil-growth, and concerted rotations for complex molecules - Parallel tempering for glassy Hamiltonians Examples are included that highlight current applications and the codes of case studies are available on the World Wide Web. Several new examples have been added since the first edition to illustrate recent applications. Questions are included in this new edition. No prior knowledge of computer simulation is assumed.

Understanding Molecular Simulation

Understanding Molecular Simulation PDF Author: Daan Frenkel
Publisher: Elsevier
ISBN: 0080519989
Category : Science
Languages : en
Pages : 661

Get Book Here

Book Description
Understanding Molecular Simulation: From Algorithms to Applications explains the physics behind the "recipes" of molecular simulation for materials science. Computer simulators are continuously confronted with questions concerning the choice of a particular technique for a given application. A wide variety of tools exist, so the choice of technique requires a good understanding of the basic principles. More importantly, such understanding may greatly improve the efficiency of a simulation program. The implementation of simulation methods is illustrated in pseudocodes and their practical use in the case studies used in the text. Since the first edition only five years ago, the simulation world has changed significantly -- current techniques have matured and new ones have appeared. This new edition deals with these new developments; in particular, there are sections on: - Transition path sampling and diffusive barrier crossing to simulaterare events - Dissipative particle dynamic as a course-grained simulation technique - Novel schemes to compute the long-ranged forces - Hamiltonian and non-Hamiltonian dynamics in the context constant-temperature and constant-pressure molecular dynamics simulations - Multiple-time step algorithms as an alternative for constraints - Defects in solids - The pruned-enriched Rosenbluth sampling, recoil-growth, and concerted rotations for complex molecules - Parallel tempering for glassy Hamiltonians Examples are included that highlight current applications and the codes of case studies are available on the World Wide Web. Several new examples have been added since the first edition to illustrate recent applications. Questions are included in this new edition. No prior knowledge of computer simulation is assumed.

Understanding Molecular Properties

Understanding Molecular Properties PDF Author: John S. Avery
Publisher: Springer Science & Business Media
ISBN: 9400937814
Category : Science
Languages : en
Pages : 592

Get Book Here

Book Description
"The Theory of Atomic Spectra", surrrrnanzlllg all that was then known about the quantum theory of free atoms; and in 1961, J.S. Griffith published "The Theory of Transition Metal Ions", in which he combined the ideas in Condon and Shortley's book with those of Bethe, Schlapp, Penney and Van Vleck. All this work, however, was done by physicists, and the results were reported in a way which was more accessable to physicists than to chemists. In the meantime, Carl J. Ballhausen had been studying quantum theory with W. Moffitt at Harvard; and in 1962 (almost simultaneously with Griffith) he published his extremely important book, "Introduction to Ligand Field Theory". This influential book was written from the standpoint of a chemist, and it became the standard work from which chemists learned the quantum theory of transition metal complexes. While it treated in detail the group theoretical aspects of crystal field theory, Carl J. Ballhausen's book also emphasized the limitations of the theory. As he pointed out, it is often not sufficient to treat the central metal ion as free (apart from the influence of the charges on the surrounding ligands): - In many cases hybridization of metal and ligand orbitals is significant. Thus, in general. a molecular orbital treatment is needed to describe transition metal complexes. However, much of the group theory developed In connection with crystal field theory can also be used in the molecular orbital treatment.

Molecular Structure

Molecular Structure PDF Author: Norman L. Allinger
Publisher: John Wiley & Sons
ISBN: 1118043529
Category : Science
Languages : en
Pages : 356

Get Book Here

Book Description
A guide to analyzing the structures and properties of organic molecules Until recently, the study of organic molecules has traveled down two disparate intellectual paths—the experimental, or physical, method and the computational, or theoretical, method. Working somewhat independently of each other, these disciplines have guided research for decades, but they are now being combined efficiently into one unified strategy. Molecular Structure delivers the essential fundamentals on both the experimental and computational methods, then goes further to show how these approaches can join forces to produce more effective analysis of the structure and properties of organic compounds by: Looking at experimental structures: electron, neutron, X-ray diffraction, and microwave spectroscopy as well as computational structures: ab initio, semi-empirical molecular orbital, and molecular mechanics calculations Discussing various electronic effects, particularly stereoelectronic effects, including hyperconjugation, negative hyperconjugation, the Bohlmann and anomeric effects, and how and why these cause changes in structures and properties of molecules Illustrating complex carbohydrate effects such as the gauche effect, the delta-two effect, and the external anomeric torsional effect Covering hydrogen bonding, the CH bond, and how energies, especially heats of formation, can be affected Using molecular mechanics to tie all of these things together in the familiar language of the organic chemist, valence bond pictures Authored by a founding father of computational chemistry, Molecular Structure broadens the scope of the subject by serving as a pioneering guide for workers in the fields of organic, biological, and computational chemistry, as they explore new possibilities to advance their discoveries. This work will also be of interest to many of those in tangential or dependent fields, including medicinal and pharmaceutical chemistry and pharmacology.

Understanding Properties of Atoms, Molecules and Materials

Understanding Properties of Atoms, Molecules and Materials PDF Author: Pranab Sarkar
Publisher: CRC Press
ISBN: 1000504433
Category : Science
Languages : en
Pages : 433

Get Book Here

Book Description
In a technology driven civilization the quest for new and smarter materials is everlasting. They are required as platforms for developing new technologies or for improving an already existing technology. The discovery of a new material is no longer chance driven or accidental, but is based on careful reasoning structured by deep understanding of the microconstituents of materials - the atoms and molecules in isolation or in an assembly. That requires fair amount of exposure to quantum and statistical mechanics. `Understanding Properties of Atoms, Molecules and Materials' is an effort (perhaps the first ever) to bring all the necessary theoretical ingredients and relevant physical information in a single volume. The book introduces the readers (first year graduates) or researchers in material chemistry/engineering to elementary quantum mechanics of atoms, molecules and solids and then goes on to make them acquainted with methods of statistical mechanics (classical as well as quantum) along with elementary principles of classical MD simulation. The basic concepts are introduced with clarity and illustrated with easy to grasp examples, thus preparing the readers for an exploration through the world of materials - the exotic and the mundane. The emphasis has been on the phenomena and what shapes them at the fundamental level. A comprehensive description of modern designing principles for materials with examples is a unique feature of the book. The highlights of the book are comprehensive introduction and analysis of Quantum states of atoms and molecules The translational symmetry and quantum states in periodic and amorphous solids Band structure and tuning Classical and quantum statistics with applications to ideal gases (photons, phonons and electrons, molecules) Quantum states in type-I and type-II superconductors (elementary theory included) Magnetic materials, materials with GMR and CMR Shape memory effects in alloys and materials 2D materials (graphene and graphene analogus) NLO and photovoltaic materials Hydrogen storage material for mitigating the looming energy crisis Quantum states in low and high band gap semiconductors Semimetals Designer materials, etc. The volume is designed and organized to create interest in the science of materials and the silent revolution that is redefining the goals and boundaries of materials science continuously.

Modeling of Molecular Properties

Modeling of Molecular Properties PDF Author: Peter Comba
Publisher: Wiley-VCH
ISBN: 9783527330218
Category : Science
Languages : en
Pages : 0

Get Book Here

Book Description
Molecular modeling encompasses applied theoretical approaches and computational techniques to model structures and properties of molecular compounds and materials in order to predict and / or interpret their properties. The modeling covered in this book ranges from methods for small chemical to large biological molecules and materials. With its comprehensive coverage of important research fields in molecular and materials science, this is a must-have for all organic, inorganic and biochemists as well as materials scientists interested in applied theoretical and computational chemistry. The 28 chapters, written by an international group of experienced theoretically oriented chemists, are grouped into four parts: Theory and Concepts; Applications in Homogeneous Catalysis; Applications in Pharmaceutical and Biological Chemistry; and Applications in Main Group, Organic and Organometallic Chemistry. The various chapters include concept papers, tutorials, and research reports.

Molecular Biology of the Cell

Molecular Biology of the Cell PDF Author:
Publisher:
ISBN: 9780815332183
Category : Cells
Languages : en
Pages : 0

Get Book Here

Book Description


Understanding Molecular Simulation

Understanding Molecular Simulation PDF Author: Daan Frenkel
Publisher: Elsevier
ISBN: 0323913180
Category : Science
Languages : en
Pages : 868

Get Book Here

Book Description
Understanding Molecular Simulation explains molecular simulation from a chemical-physics and statistical-mechanics perspective. It highlights how physical concepts are used to develop better algorithms and expand the range of applicability of simulations. Understanding Molecular Simulation is equally relevant for those who develop new code and those who use existing packages. Both groups are continuously confronted with the question of which computational technique best suits a given application. Understanding Molecular Simulation provides readers with the foundational knowledge they need to learn about, select and apply the most appropriate of these tools to their own work. The implementation of simulation methods is illustrated in pseudocodes, and their practical use is shown via case studies presented throughout the text. Since the second edition's publication, the simulation world has expanded significantly: existing techniques have continued to develop, and new ones have emerged, opening up novel application areas. This new edition aims to describe these new developments without becoming exhaustive; examples are included that highlight current uses, and several new examples have been added to illustrate recent applications. Examples, case studies, questions, and downloadable algorithms are also included to support learning. No prior knowledge of computer simulation is assumed. - Fully updated guide to both the current state and latest developments in the field of molecular simulation, including added and expanded information on such topics as molecular dynamics and statistical assessment of simulation results - Gives a rounded overview by showing fundamental background information in practice via new examples in a range of key fields - Provides online access to new data, algorithms and tutorial slides to support and encourage practice and learning

Beyond the Molecular Frontier

Beyond the Molecular Frontier PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309168392
Category : Science
Languages : en
Pages : 238

Get Book Here

Book Description
Chemistry and chemical engineering have changed significantly in the last decade. They have broadened their scopeâ€"into biology, nanotechnology, materials science, computation, and advanced methods of process systems engineering and controlâ€"so much that the programs in most chemistry and chemical engineering departments now barely resemble the classical notion of chemistry. Beyond the Molecular Frontier brings together research, discovery, and invention across the entire spectrum of the chemical sciencesâ€"from fundamental, molecular-level chemistry to large-scale chemical processing technology. This reflects the way the field has evolved, the synergy at universities between research and education in chemistry and chemical engineering, and the way chemists and chemical engineers work together in industry. The astonishing developments in science and engineering during the 20th century have made it possible to dream of new goals that might previously have been considered unthinkable. This book identifies the key opportunities and challenges for the chemical sciences, from basic research to societal needs and from terrorism defense to environmental protection, and it looks at the ways in which chemists and chemical engineers can work together to contribute to an improved future.

Understanding the Properties of Matter

Understanding the Properties of Matter PDF Author: Michael de Podesta
Publisher: CRC Press
ISBN: 1351991183
Category : Science
Languages : en
Pages : 460

Get Book Here

Book Description
Understanding the Properties of Matter: 2nd Edition takes a unique phenomenological approach to the presentation of matter, materials, and solid-state physics. After an overview of basic ideas and a reminder of the importance of measurement, the author considers in turn gases, solids, liquids, and phase changes. For each topic, the focus is on "what happens." After a preliminary examination of data on the properties of matter, the author raises, then addresses a series of questions concerning the data. It is only in answering these questions that he adopts the theoretical approach to the properties of matter. This approach can reawaken in readers the fascination for the subject that inspired some of the greatest physicists of our age. Examples and extensive exercises reinforce the concepts. A supporting Web site furnishes for free download a plethora of additional materials, including: " Supplementary chapters on the band theory of solids and the magnetic properties of solids " Copies of all the data talbes used in the book, in PDF and spreadsheet formats " Enlarged copies of all figures " A simple molecular dynamics simulation " Animations uillustrating important featrues of key equations " Answers to the end-of-chapter exercises Understanding the Properties of Matter is an entertaining and innovative text accessible at the undergraduate level.

Molecular Physical Chemistry

Molecular Physical Chemistry PDF Author: Keith A McLauchlan
Publisher: Royal Society of Chemistry
ISBN: 1847551505
Category : Science
Languages : en
Pages : 136

Get Book Here

Book Description
Molecular Physical Chemistry: A Concise Introduction focuses on two main aspects of physical chemistry: thermodynamics and reaction dynamics. By looking at the properties of the atoms and molecules that constitute matter, it makes use of results from modern experiments conducted on small numbers of molecules. These molecular properties allow the behaviour of larger groups of molecules to be predicted. This is in contrast to conventional approaches which are based upon how the subjects have developed historically. It attempts to show how some basic concepts can be easily applied to give verifiable results in simple systems before extending them to more complicated scenarios. The text is intended as an aid to understanding these central topics of physical chemistry, rather than an introduction to them, and some familiarity with them is assumed throughout. Worked examples and problems are given at the end of each chapter. Molecular Physical Chemistry: A Concise Introduction will be welcomed by graduate and advanced undergraduate students, as well as lecturers. Upon completion of this book the reader will see its subject matter as an integral part of their whole approach to chemistry. "Professor McLauchlin is certainly owed a debt of gratitude by the chemical community for this effort to bring enjoyment and understanding to the future generation. It will be interesting to see if this experiment helps students replace the fear of physical chemistry by an appreciation of its power and beauty." Professor William Klemperer, University of Harvard