Author: Franco Maloberti
Publisher: John Wiley & Sons
ISBN: 047074555X
Category : Technology & Engineering
Languages : en
Pages : 694
Book Description
The microelectronics evolution has given rise to many modern benefits but has also changed design methods and attitudes to learning. Technology advancements shifted focus from simple circuits to complex systems with major attention to high-level descriptions. The design methods moved from a bottom-up to a top-down approach. For today’s students, the most beneficial approach to learning is this top-down method that demonstrates a global view of electronics before going into specifics. Franco Maloberti uses this approach to explain the fundamentals of electronics, such as processing functions, signals and their properties. Here he presents a helpful balance of theory, examples, and verification of results, while keeping mathematics and signal processing theory to a minimum. Key features: Presents a new learning approach that will greatly improve students’ ability to retain key concepts in electronics studies Match the evolution of Computer Aided Design (CAD) which focuses increasingly on high-level design Covers sub-functions as well as basic circuits and basic components Provides real-world examples to inspire a thorough understanding of global issues, before going into the detail of components and devices Discusses power conversion and management; an important area that is missing in other books on the subject End-of-chapter problems and self-training sections support the reader in exploring systems and understanding them at increasing levels of complexity Inside this book you will find a complete explanation of electronics that can be applied across a range of disciplines including electrical engineering and physics. This comprehensive introduction will be of benefit to students studying electronics, as well as their lecturers and professors. Postgraduate engineers, those in vocational training, and design and application engineers will also find this book useful.
Understanding Microelectronics
Author: Franco Maloberti
Publisher: John Wiley & Sons
ISBN: 047074555X
Category : Technology & Engineering
Languages : en
Pages : 694
Book Description
The microelectronics evolution has given rise to many modern benefits but has also changed design methods and attitudes to learning. Technology advancements shifted focus from simple circuits to complex systems with major attention to high-level descriptions. The design methods moved from a bottom-up to a top-down approach. For today’s students, the most beneficial approach to learning is this top-down method that demonstrates a global view of electronics before going into specifics. Franco Maloberti uses this approach to explain the fundamentals of electronics, such as processing functions, signals and their properties. Here he presents a helpful balance of theory, examples, and verification of results, while keeping mathematics and signal processing theory to a minimum. Key features: Presents a new learning approach that will greatly improve students’ ability to retain key concepts in electronics studies Match the evolution of Computer Aided Design (CAD) which focuses increasingly on high-level design Covers sub-functions as well as basic circuits and basic components Provides real-world examples to inspire a thorough understanding of global issues, before going into the detail of components and devices Discusses power conversion and management; an important area that is missing in other books on the subject End-of-chapter problems and self-training sections support the reader in exploring systems and understanding them at increasing levels of complexity Inside this book you will find a complete explanation of electronics that can be applied across a range of disciplines including electrical engineering and physics. This comprehensive introduction will be of benefit to students studying electronics, as well as their lecturers and professors. Postgraduate engineers, those in vocational training, and design and application engineers will also find this book useful.
Publisher: John Wiley & Sons
ISBN: 047074555X
Category : Technology & Engineering
Languages : en
Pages : 694
Book Description
The microelectronics evolution has given rise to many modern benefits but has also changed design methods and attitudes to learning. Technology advancements shifted focus from simple circuits to complex systems with major attention to high-level descriptions. The design methods moved from a bottom-up to a top-down approach. For today’s students, the most beneficial approach to learning is this top-down method that demonstrates a global view of electronics before going into specifics. Franco Maloberti uses this approach to explain the fundamentals of electronics, such as processing functions, signals and their properties. Here he presents a helpful balance of theory, examples, and verification of results, while keeping mathematics and signal processing theory to a minimum. Key features: Presents a new learning approach that will greatly improve students’ ability to retain key concepts in electronics studies Match the evolution of Computer Aided Design (CAD) which focuses increasingly on high-level design Covers sub-functions as well as basic circuits and basic components Provides real-world examples to inspire a thorough understanding of global issues, before going into the detail of components and devices Discusses power conversion and management; an important area that is missing in other books on the subject End-of-chapter problems and self-training sections support the reader in exploring systems and understanding them at increasing levels of complexity Inside this book you will find a complete explanation of electronics that can be applied across a range of disciplines including electrical engineering and physics. This comprehensive introduction will be of benefit to students studying electronics, as well as their lecturers and professors. Postgraduate engineers, those in vocational training, and design and application engineers will also find this book useful.
Fundamentals of Microelectronics
Author: Behzad Razavi
Publisher: John Wiley & Sons
ISBN: 1119695147
Category : Technology & Engineering
Languages : en
Pages : 962
Book Description
Fundamentals of Microelectronics, 3rd Edition, is a comprehensive introduction to the design and analysis of electrical circuits, enabling students to develop the practical skills and engineering intuition necessary to succeed in their future careers. Through an innovative “analysis by inspection” framework, students learn to deconstruct complex problems into familiar components and reach solutions using basic principles. A step-by-step synthesis approach to microelectronics demonstrates the role of each device in a circuit while helping students build “design-oriented” mindsets. The revised third edition covers basic semiconductor physics, diode models and circuits, bipolar transistors and amplifiers, oscillators, frequency response, and more. In-depth chapters feature illustrative examples and numerous problems of varying levels of difficulty, including design problems that challenge students to select the bias and component values to satisfy particular requirements. The text contains a wealth of pedagogical tools, such as application sidebars, chapter summaries, self-tests with answers, and Multisim and SPICE software simulation problems. Now available in enhanced ePub format, Fundamentals of Microelectronics is ideal for single- and two-semester courses in the subject.
Publisher: John Wiley & Sons
ISBN: 1119695147
Category : Technology & Engineering
Languages : en
Pages : 962
Book Description
Fundamentals of Microelectronics, 3rd Edition, is a comprehensive introduction to the design and analysis of electrical circuits, enabling students to develop the practical skills and engineering intuition necessary to succeed in their future careers. Through an innovative “analysis by inspection” framework, students learn to deconstruct complex problems into familiar components and reach solutions using basic principles. A step-by-step synthesis approach to microelectronics demonstrates the role of each device in a circuit while helping students build “design-oriented” mindsets. The revised third edition covers basic semiconductor physics, diode models and circuits, bipolar transistors and amplifiers, oscillators, frequency response, and more. In-depth chapters feature illustrative examples and numerous problems of varying levels of difficulty, including design problems that challenge students to select the bias and component values to satisfy particular requirements. The text contains a wealth of pedagogical tools, such as application sidebars, chapter summaries, self-tests with answers, and Multisim and SPICE software simulation problems. Now available in enhanced ePub format, Fundamentals of Microelectronics is ideal for single- and two-semester courses in the subject.
The Navy Electricity and Electronics Training Series: Module 14 Introduction To Microelectronics
Author: United States. Navy
Publisher: Lulu.com
ISBN: 0359093183
Category : Fiction
Languages : en
Pages : 308
Book Description
Module 14, Introduction to Microelectronics, covers microelectronics technology and miniature and microminiature circuit repair.The Navy Electricity and Electronics Training Series (NEETS) was developed for use by personnel in many electrical- and electronic-related Navy ratings. Written by, and with the advice of, senior technicians in these ratings, this series provides beginners with fundamental electrical and electronic concepts through self-study. The presentation of this series is not oriented to any specific rating structure, but is divided into modules containing related information organized into traditional paths of instruction.
Publisher: Lulu.com
ISBN: 0359093183
Category : Fiction
Languages : en
Pages : 308
Book Description
Module 14, Introduction to Microelectronics, covers microelectronics technology and miniature and microminiature circuit repair.The Navy Electricity and Electronics Training Series (NEETS) was developed for use by personnel in many electrical- and electronic-related Navy ratings. Written by, and with the advice of, senior technicians in these ratings, this series provides beginners with fundamental electrical and electronic concepts through self-study. The presentation of this series is not oriented to any specific rating structure, but is divided into modules containing related information organized into traditional paths of instruction.
Microelectronics
Author: Maurizio Di Paolo Emilio
Publisher: Springer
ISBN: 3319225456
Category : Technology & Engineering
Languages : en
Pages : 118
Book Description
This book serves as a practical guide for practicing engineers who need to design analog circuits for microelectronics. Readers will develop a comprehensive understanding of the basic techniques of analog modern electronic circuit design, discrete and integrated, application as sensors and control and data acquisition systems,and techniques of PCB design. · Describes fundamentals of microelectronics design in an accessible manner; · Takes a problem-solving approach to the topic, offering a hands-on guide for practicing engineers; · Provides realistic examples to inspire a thorough understanding of system-level issues, before going into the detail of components and devices; · Uses a new approach and provides several skills that help engineers and designers retain key and advanced concepts.
Publisher: Springer
ISBN: 3319225456
Category : Technology & Engineering
Languages : en
Pages : 118
Book Description
This book serves as a practical guide for practicing engineers who need to design analog circuits for microelectronics. Readers will develop a comprehensive understanding of the basic techniques of analog modern electronic circuit design, discrete and integrated, application as sensors and control and data acquisition systems,and techniques of PCB design. · Describes fundamentals of microelectronics design in an accessible manner; · Takes a problem-solving approach to the topic, offering a hands-on guide for practicing engineers; · Provides realistic examples to inspire a thorough understanding of system-level issues, before going into the detail of components and devices; · Uses a new approach and provides several skills that help engineers and designers retain key and advanced concepts.
Microelectronic Circuit Design
Author: Richard C. Jaeger
Publisher:
ISBN: 9780071102032
Category : Circuits intégrés - Conception et construction
Languages : en
Pages : 1190
Book Description
This text develops a comprehensive understanding of the basic techniques of modern electronic circuit design: discrete & integrated, analog & digital. It includes problem sets at the end of each chapter that are graded in level of difficulty.
Publisher:
ISBN: 9780071102032
Category : Circuits intégrés - Conception et construction
Languages : en
Pages : 1190
Book Description
This text develops a comprehensive understanding of the basic techniques of modern electronic circuit design: discrete & integrated, analog & digital. It includes problem sets at the end of each chapter that are graded in level of difficulty.
Microelectronics Education
Author: Ton J. Mouthaan
Publisher: Springer Science & Business Media
ISBN: 9401151105
Category : Technology & Engineering
Languages : en
Pages : 299
Book Description
Dear participant in the second European Workshop on Microelectronics Education, It is a pleasure to present you the Proceedings of the Second European Workshop on Microelectronics Education and to welcome you at the Workshop. The Organising Committee is very pleased that it has found several key persons, with highly appreciated levels of knowledge and expertise, willing to present Invited Contributions to this Workshop. We have striven for an interesting spread over important areas like the expected demands for educated engineers in the wide field of Microelectronics, and Microsystems, in European industry (and beyond!) and innovations in method and focus of our educational programmes. This is the second European Workshop in this area; the first one was held in Grenoble in France in the spring of 1996. It was the initiative of Georges Kamarinos, Nadine Guillemot and Bernard Courtois to organise this Workshop because they felt that Microelectronics was 'at a turning point' to become the core of the largest industry in the world and that this warranted a serious (re-)consideration of our educational imperatives. It is now two years since and their feeling has become reality: nobody doubts that by the year 2000 the microelecnonics industry will be the largest industrial sector. It is also obvious that because of that and because of the predicted shortfall of educated engineers we must continuously reconsider the quality of our educational approach.
Publisher: Springer Science & Business Media
ISBN: 9401151105
Category : Technology & Engineering
Languages : en
Pages : 299
Book Description
Dear participant in the second European Workshop on Microelectronics Education, It is a pleasure to present you the Proceedings of the Second European Workshop on Microelectronics Education and to welcome you at the Workshop. The Organising Committee is very pleased that it has found several key persons, with highly appreciated levels of knowledge and expertise, willing to present Invited Contributions to this Workshop. We have striven for an interesting spread over important areas like the expected demands for educated engineers in the wide field of Microelectronics, and Microsystems, in European industry (and beyond!) and innovations in method and focus of our educational programmes. This is the second European Workshop in this area; the first one was held in Grenoble in France in the spring of 1996. It was the initiative of Georges Kamarinos, Nadine Guillemot and Bernard Courtois to organise this Workshop because they felt that Microelectronics was 'at a turning point' to become the core of the largest industry in the world and that this warranted a serious (re-)consideration of our educational imperatives. It is now two years since and their feeling has become reality: nobody doubts that by the year 2000 the microelecnonics industry will be the largest industrial sector. It is also obvious that because of that and because of the predicted shortfall of educated engineers we must continuously reconsider the quality of our educational approach.
Influence of Temperature on Microelectronics and System Reliability
Author: Pradeep Lall
Publisher: CRC Press
ISBN: 0429605595
Category : Technology & Engineering
Languages : en
Pages : 332
Book Description
This book raises the level of understanding of thermal design criteria. It provides the design team with sufficient knowledge to help them evaluate device architecture trade-offs and the effects of operating temperatures. The author provides readers a sound scientific basis for system operation at realistic steady state temperatures without reliability penalties. Higher temperature performance than is commonly recommended is shown to be cost effective in production for life cycle costs. The microelectronic package considered in the book is assumed to consist of a semiconductor device with first-level interconnects that may be wirebonds, flip-chip, or tape automated bonds; die attach; substrate; substrate attach; case; lid; lid seal; and lead seal. The temperature effects on electrical parameters of both bipolar and MOSFET devices are discussed, and models quantifying the temperature effects on package elements are identified. Temperature-related models have been used to derive derating criteria for determining the maximum and minimum allowable temperature stresses for a given microelectronic package architecture. The first chapter outlines problems with some of the current modeling strategies. The next two chapters present microelectronic device failure mechanisms in terms of their dependence on steady state temperature, temperature cycle, temperature gradient, and rate of change of temperature at the chip and package level. Physics-of-failure based models used to characterize these failure mechanisms are identified and the variabilities in temperature dependence of each of the failure mechanisms are characterized. Chapters 4 and 5 describe the effects of temperature on the performance characteristics of MOS and bipolar devices. Chapter 6 discusses using high-temperature stress screens, including burn-in, for high-reliability applications. The burn-in conditions used by some manufacturers are examined and a physics-of-failure approach is described. The
Publisher: CRC Press
ISBN: 0429605595
Category : Technology & Engineering
Languages : en
Pages : 332
Book Description
This book raises the level of understanding of thermal design criteria. It provides the design team with sufficient knowledge to help them evaluate device architecture trade-offs and the effects of operating temperatures. The author provides readers a sound scientific basis for system operation at realistic steady state temperatures without reliability penalties. Higher temperature performance than is commonly recommended is shown to be cost effective in production for life cycle costs. The microelectronic package considered in the book is assumed to consist of a semiconductor device with first-level interconnects that may be wirebonds, flip-chip, or tape automated bonds; die attach; substrate; substrate attach; case; lid; lid seal; and lead seal. The temperature effects on electrical parameters of both bipolar and MOSFET devices are discussed, and models quantifying the temperature effects on package elements are identified. Temperature-related models have been used to derive derating criteria for determining the maximum and minimum allowable temperature stresses for a given microelectronic package architecture. The first chapter outlines problems with some of the current modeling strategies. The next two chapters present microelectronic device failure mechanisms in terms of their dependence on steady state temperature, temperature cycle, temperature gradient, and rate of change of temperature at the chip and package level. Physics-of-failure based models used to characterize these failure mechanisms are identified and the variabilities in temperature dependence of each of the failure mechanisms are characterized. Chapters 4 and 5 describe the effects of temperature on the performance characteristics of MOS and bipolar devices. Chapter 6 discusses using high-temperature stress screens, including burn-in, for high-reliability applications. The burn-in conditions used by some manufacturers are examined and a physics-of-failure approach is described. The
MICROELECTRONICS
Author: Jacob Millman
Publisher:
ISBN:
Category :
Languages : en
Pages : 1000
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 1000
Book Description
Thermal Stress and Strain in Microelectronics Packaging
Author: John Lau
Publisher: Springer Science & Business Media
ISBN: 1468477676
Category : Technology & Engineering
Languages : en
Pages : 904
Book Description
Microelectronics packaging and interconnection have experienced exciting growth stimulated by the recognition that systems, not just silicon, provide the solution to evolving applications. In order to have a high density/ performance/yield/quality/reliability, low cost, and light weight system, a more precise understanding of the system behavior is required. Mechanical and thermal phenomena are among the least understood and most complex of the many phenomena encountered in microelectronics packaging systems and are found on the critical path of neatly every design and process in the electronics industry. The last decade has witnessed an explosive growth in the research and development efforts devoted to determining the mechanical and thermal behaviors of microelectronics packaging. With the advance of very large scale integration technologies, thousands to tens of thousands of devices can be fabricated on a silicon chip. At the same time, demands to further reduce packaging signal delay and increase packaging density between communicat ing circuits have led to the use of very high power dissipation single-chip modules and multi-chip modules. The result of these developments has been a rapid growth in module level heat flux within the personal, workstation, midrange, mainframe, and super computers. Thus, thermal (temperature, stress, and strain) management is vital for microelectronics packaging designs and analyses. How to determine the temperature distribution in the elec tronics components and systems is outside the scope of this book, which focuses on the determination of stress and strain distributions in the electronics packaging.
Publisher: Springer Science & Business Media
ISBN: 1468477676
Category : Technology & Engineering
Languages : en
Pages : 904
Book Description
Microelectronics packaging and interconnection have experienced exciting growth stimulated by the recognition that systems, not just silicon, provide the solution to evolving applications. In order to have a high density/ performance/yield/quality/reliability, low cost, and light weight system, a more precise understanding of the system behavior is required. Mechanical and thermal phenomena are among the least understood and most complex of the many phenomena encountered in microelectronics packaging systems and are found on the critical path of neatly every design and process in the electronics industry. The last decade has witnessed an explosive growth in the research and development efforts devoted to determining the mechanical and thermal behaviors of microelectronics packaging. With the advance of very large scale integration technologies, thousands to tens of thousands of devices can be fabricated on a silicon chip. At the same time, demands to further reduce packaging signal delay and increase packaging density between communicat ing circuits have led to the use of very high power dissipation single-chip modules and multi-chip modules. The result of these developments has been a rapid growth in module level heat flux within the personal, workstation, midrange, mainframe, and super computers. Thus, thermal (temperature, stress, and strain) management is vital for microelectronics packaging designs and analyses. How to determine the temperature distribution in the elec tronics components and systems is outside the scope of this book, which focuses on the determination of stress and strain distributions in the electronics packaging.
Microelectronics Failure Analysis
Author: EDFAS Desk Reference Committee
Publisher: ASM International
ISBN: 1615037268
Category : Technology & Engineering
Languages : en
Pages : 673
Book Description
Includes bibliographical references and index.
Publisher: ASM International
ISBN: 1615037268
Category : Technology & Engineering
Languages : en
Pages : 673
Book Description
Includes bibliographical references and index.