Uncertainty Modeling in Vibration, Control and Fuzzy Analysis of Structural Systems

Uncertainty Modeling in Vibration, Control and Fuzzy Analysis of Structural Systems PDF Author: Bilal M. Ayyub
Publisher: World Scientific
ISBN: 9810231342
Category : Technology & Engineering
Languages : en
Pages : 382

Get Book Here

Book Description
This book gives an overview of the current state of uncertainty modeling in vibration, control, and fuzzy analysis of structural and mechanical systems. It is a coherent compendium written by leading experts and offers the reader a sampling of exciting research areas in several fast-growing branches in this field. Uncertainty modeling and analysis are becoming an integral part of system definition and modeling in many fields. The book consists of ten chapters that report the work of researchers, scientists and engineers on theoretical developments and diversified applications in engineering systems. They deal with modeling for vibration, control, and fuzzy analysis of structural and mechanical systems under uncertain conditions. The book designed for readers who are familiar with the fundamentals and wish to study a particular topic or use the book as an authoritative reference. It gives readers a sophisticated toolbox for tackling modeling problems in mechanical and structural systems in real-world situations. The book is part of a series on Stability, Vibration and Control of Structures, and provides vital information in these areas.

Uncertainty Modeling In Vibration, Control And Fuzzy Analysis Of Structural Systems

Uncertainty Modeling In Vibration, Control And Fuzzy Analysis Of Structural Systems PDF Author: Bilal M Ayyub
Publisher: World Scientific
ISBN: 9814497398
Category : Technology & Engineering
Languages : en
Pages : 382

Get Book Here

Book Description
This book gives an overview of the current state of uncertainty modeling in vibration, control, and fuzzy analysis of structural and mechanical systems. It is a coherent compendium written by leading experts and offers the reader a sampling of exciting research areas in several fast-growing branches in this field. Uncertainty modeling and analysis are becoming an integral part of system definition and modeling in many fields. The book consists of ten chapters that report the work of researchers, scientists and engineers on theoretical developments and diversified applications in engineering systems. They deal with modeling for vibration, control, and fuzzy analysis of structural and mechanical systems under uncertain conditions. The book designed for readers who are familiar with the fundamentals and wish to study a particular topic or use the book as an authoritative reference. It gives readers a sophisticated toolbox for tackling modeling problems in mechanical and structural systems in real-world situations. The book is part of a series on Stability, Vibration and Control of Structures, and provides vital information in these areas.

Uncertainty Modeling in Vibration, Control and Fuzzy Analysis of Structural Systems

Uncertainty Modeling in Vibration, Control and Fuzzy Analysis of Structural Systems PDF Author: Bilal M. Ayyub
Publisher: World Scientific
ISBN: 9810231342
Category : Technology & Engineering
Languages : en
Pages : 382

Get Book Here

Book Description
This book gives an overview of the current state of uncertainty modeling in vibration, control, and fuzzy analysis of structural and mechanical systems. It is a coherent compendium written by leading experts and offers the reader a sampling of exciting research areas in several fast-growing branches in this field. Uncertainty modeling and analysis are becoming an integral part of system definition and modeling in many fields. The book consists of ten chapters that report the work of researchers, scientists and engineers on theoretical developments and diversified applications in engineering systems. They deal with modeling for vibration, control, and fuzzy analysis of structural and mechanical systems under uncertain conditions. The book designed for readers who are familiar with the fundamentals and wish to study a particular topic or use the book as an authoritative reference. It gives readers a sophisticated toolbox for tackling modeling problems in mechanical and structural systems in real-world situations. The book is part of a series on Stability, Vibration and Control of Structures, and provides vital information in these areas.

John Slater (Cut 2).

John Slater (Cut 2). PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 25

Get Book Here

Book Description


Fuzzy Modeling and Fuzzy Control

Fuzzy Modeling and Fuzzy Control PDF Author: Huaguang Zhang
Publisher: Springer Science & Business Media
ISBN: 0817644911
Category : Technology & Engineering
Languages : en
Pages : 423

Get Book Here

Book Description
Fuzzy logic methodology has proven effective in dealing with complex nonlinear systems containing uncertainties that are otherwise difficult to model. Technology based on this methodology is applicable to many real-world problems, especially in the area of consumer products. This book presents the first comprehensive, unified treatment of fuzzy modeling and fuzzy control, providing tools for the control of complex nonlinear systems. Coverage includes model complexity, model precision, and computing time. This is an excellent reference for electrical, computer, chemical, industrial, civil, manufacturing, mechanical and aeronautical engineers, and also useful for graduate courses in electrical engineering, computer engineering, and computer science.

Stochastically Excited Nonlinear Ocean Structures

Stochastically Excited Nonlinear Ocean Structures PDF Author: Michael F. Shlesinger
Publisher: World Scientific
ISBN: 9789810233921
Category : Technology & Engineering
Languages : en
Pages : 340

Get Book Here

Book Description
Ocean structures, including ships, boats, piers, docks, rigs and platforms, are subject to fair weather wind and waves, as well as violent storms. A scientific analysis of these structures, under varying conditions, requires a mix of civil engineering, physics and applied mathematics. Chapters by experts in these fields are presented which explore the nonlinear responses of ocean structures to stochastic forcing. Theoretical methods calculate aspects of time, frequency and phase space responses. Probabilities governed by stochastic differential equations arc investigated directly or through moment correlations, such as power spectra. Calculations can also involve level crossing statistics and first passage times. Tiffs book will help scientists study stochastic nonlinear equations and help engineers design for short term survivability of structures in storms and long life in the face of everyday fatigue.

Uncertainty Modeling for Structural Control Analysis and Synthesis

Uncertainty Modeling for Structural Control Analysis and Synthesis PDF Author: Mark Eric Campbell
Publisher:
ISBN:
Category :
Languages : en
Pages : 162

Get Book Here

Book Description


Vibration Mitigation Systems in Structural Engineering

Vibration Mitigation Systems in Structural Engineering PDF Author: Okyay Altay
Publisher: CRC Press
ISBN: 1351347616
Category : Technology & Engineering
Languages : en
Pages : 400

Get Book Here

Book Description
Book presents a comprehensive coverage of the area of vibration control of civil structures subjected to different types of loading while using passive, semi-active, and/or active controls. Presents the theoretical governing equations as well as the associated design guides of various vibration control mitigation approaches. Discusses structural monitoring aspects such as sensor technology, system identification and signal processing topics. Reviews structural control aspects, such as algorithms. Includes solved examples utilizing MATLAB®/SIMULINK® with source codes of the calculation examples and design tool set.

Fuzzy Randomness

Fuzzy Randomness PDF Author: Bernd Möller
Publisher: Springer Science & Business Media
ISBN: 9783540402947
Category : Business & Economics
Languages : en
Pages : 356

Get Book Here

Book Description
The subject of the book is the comprehensive consideration of uncertainty in the numerical analysis, the safety assessment, and the design of structures. Stochastic as well as non-stochastic uncertainty is treated on the basis of the superordinated uncertainty model fuzzy randomness. This new uncertainty model contains the special cases of real valued random variables and fuzzy variables and permits to take account of both uncertainty characteristics simultaneously. The book introduces to the problem of uncertainty and provides a current survey of relevant uncertainty models and their application in civil engineering. The necessary, special mathematical basics of the fuzzy set theory and the theory of fuzzy random variables are explained in an engineering manner and illustrated by way of examples. Basic ideas and methods for appropriately quantifying uncertain structural parameters are presented and demonstrated by means of characteristic examples. For processing uncertainty in structural analysis, safety assessment, and structural design completely new algorithms are introduced and described in detail as fuzzy structural analysis, fuzzy probabilistic safety assessment, and fuzzy cluster design. The application of the new methods is demonstrated for selected examples from civil engineering, their essential advantages are emphasized. For the first time this represents a coherent, overall concept for considering uncertainty in civil engineering. The book in particular addresses to civil engineers and requires a university degree as well as basic knowledge in stochastics. But also for mechanical engineers, colleagues from applied mathematics, and other people who are interested in uncertainty problems the book represents a suitable introduction to the problem of uncertainty modeling and provides general solutions and algorithms, which may also be applied to problems from other fields beyond engineering.

Active Control of Bidirectional Structural Vibration

Active Control of Bidirectional Structural Vibration PDF Author: Wen Yu
Publisher: Springer Nature
ISBN: 3030466507
Category : Technology & Engineering
Languages : en
Pages : 126

Get Book Here

Book Description
This book focuses on safeguarding civil structures and residents from natural hazards such as earthquakes through the use of active control. It proposes novel proportional-derivative (PD) and proportional-integral-derivative (PID) controllers, as well as discrete-time sliding mode controllers (DSMCs) for the vibration control of structures involving nonlinearities. Fuzzy logic techniques are used to compensate for nonlinearities. The first part of the book addresses modelling and feedback control in inelastic structures and presents a design for PD/PID controllers. In the second part, classical PD/PID and type-2 fuzzy control techniques are combined to compensate for uncertainties in the structures of buildings. The methodology for tuning the gains of PD/PID is obtained using Lyapunov stability theory, and the system’s stability is verified. Lastly, the book puts forward a DSMC design that does not require system parameters, allowing it to be more flexibly applied. All program codes used in the paper are presented in a MATLAB®/Simulink® environment. Given its scope, the book will be of interest to mechanical and civil engineers, and to advanced undergraduate and graduate engineering students in the areas of structural engineering, structural vibration, and advanced control.

IUTAM Symposium on the Vibration Analysis of Structures with Uncertainties

IUTAM Symposium on the Vibration Analysis of Structures with Uncertainties PDF Author: Alexander K. Belyaev
Publisher: Springer Science & Business Media
ISBN: 9400702892
Category : Technology & Engineering
Languages : en
Pages : 471

Get Book Here

Book Description
The Symposium was aimed at the theoretical and numerical problems involved in modelling the dynamic response of structures which have uncertain properties due to variability in the manufacturing and assembly process, with automotive and aerospace structures forming prime examples. It is well known that the difficulty in predicting the response statistics of such structures is immense, due to the complexity of the structure, the large number of variables which might be uncertain, and the inevitable lack of data regarding the statistical distribution of these variables. The Symposium participants presented the latest thinking in this very active research area, and novel techniques were presented covering the full frequency spectrum of low, mid, and high frequency vibration problems. It was demonstrated that for high frequency vibrations the response statistics can saturate and become independent of the detailed distribution of the uncertain system parameters. A number of presentations exploited this physical behaviour by using and extending methods originally developed in both phenomenological thermodynamics and in the fields of quantum mechanics and random matrix theory. For low frequency vibrations a number of presentations focussed on parametric uncertainty modelling (for example, probabilistic models, interval analysis, and fuzzy descriptions) and on methods of propagating this uncertainty through a large dynamic model in an effi cient way. At mid frequencies the problem is mixed, and various hybrid schemes were proposed. It is clear that a comprehensive solution to the problem of predicting the vibration response of uncertain structures across the whole frequency range requires expertise across a wide range of areas (including probabilistic and non-probabilistic methods, interval and info-gap analysis, statistical energy analysis, statistical thermodynamics, random wave approaches, and large scale computations) and this IUTAM symposium presented a unique opportunity to bring together outstanding international experts in these fields.