Uncertainty in Knowledge Bases

Uncertainty in Knowledge Bases PDF Author: Bernadette Bouchon-Meunier
Publisher: Springer Science & Business Media
ISBN: 9783540543466
Category : Computers
Languages : en
Pages : 630

Get Book Here

Book Description
One out of every two men over eigthy suffers from carcinoma of the prostate.It is discovered incidentally in many patients with an alleged benign prostatic hyperplasia. In treating patients, the authors make clear that primary radical prostatectomy is preferred over transurethral resection due to the lower complication rate.

Uncertainty in Knowledge Bases

Uncertainty in Knowledge Bases PDF Author: Bernadette Bouchon-Meunier
Publisher: Springer Science & Business Media
ISBN: 9783540543466
Category : Computers
Languages : en
Pages : 630

Get Book Here

Book Description
One out of every two men over eigthy suffers from carcinoma of the prostate.It is discovered incidentally in many patients with an alleged benign prostatic hyperplasia. In treating patients, the authors make clear that primary radical prostatectomy is preferred over transurethral resection due to the lower complication rate.

Uncertainty and Vagueness in Knowledge Based Systems

Uncertainty and Vagueness in Knowledge Based Systems PDF Author: Rudolf Kruse
Publisher: Springer Science & Business Media
ISBN: 3642767028
Category : Computers
Languages : en
Pages : 495

Get Book Here

Book Description
The primary aim of this monograph is to provide a formal framework for the representation and management of uncertainty and vagueness in the field of artificial intelligence. It puts particular emphasis on a thorough analysis of these phenomena and on the development of sound mathematical modeling approaches. Beyond this theoretical basis the scope of the book includes also implementational aspects and a valuation of existing models and systems. The fundamental ambition of this book is to show that vagueness and un certainty can be handled adequately by using measure-theoretic methods. The presentation of applicable knowledge representation formalisms and reasoning algorithms substantiates the claim that efficiency requirements do not necessar ily require renunciation of an uncompromising mathematical modeling. These results are used to evaluate systems based on probabilistic methods as well as on non-standard concepts such as certainty factors, fuzzy sets or belief functions. The book is intended to be self-contained and addresses researchers and practioneers in the field of knowledge based systems. It is in particular suit able as a textbook for graduate-level students in AI, operations research and applied probability. A solid mathematical background is necessary for reading this book. Essential parts of the material have been the subject of courses given by the first author for students of computer science and mathematics held since 1984 at the University in Braunschweig.

Information Processing and Management of Uncertainty in Knowledge-Based Systems

Information Processing and Management of Uncertainty in Knowledge-Based Systems PDF Author: Marie-Jeanne Lesot
Publisher: Springer Nature
ISBN: 3030501469
Category : Computers
Languages : en
Pages : 779

Get Book Here

Book Description
This three volume set (CCIS 1237-1239) constitutes the proceedings of the 18th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, IPMU 2020, in June 2020. The conference was scheduled to take place in Lisbon, Portugal, at University of Lisbon, but due to COVID-19 pandemic it was held virtually. The 173 papers were carefully reviewed and selected from 213 submissions. The papers are organized in topical sections: homage to Enrique Ruspini; invited talks; foundations and mathematics; decision making, preferences and votes; optimization and uncertainty; games; real world applications; knowledge processing and creation; machine learning I; machine learning II; XAI; image processing; temporal data processing; text analysis and processing; fuzzy interval analysis; theoretical and applied aspects of imprecise probabilities; similarities in artificial intelligence; belief function theory and its applications; aggregation: theory and practice; aggregation: pre-aggregation functions and other generalizations of monotonicity; aggregation: aggregation of different data structures; fuzzy methods in data mining and knowledge discovery; computational intelligence for logistics and transportation problems; fuzzy implication functions; soft methods in statistics and data analysis; image understanding and explainable AI; fuzzy and generalized quantifier theory; mathematical methods towards dealing with uncertainty in applied sciences; statistical image processing and analysis, with applications in neuroimaging; interval uncertainty; discrete models and computational intelligence; current techniques to model, process and describe time series; mathematical fuzzy logic and graded reasoning models; formal concept analysis, rough sets, general operators and related topics; computational intelligence methods in information modelling, representation and processing.

A Methodology for Uncertainty in Knowledge-Based Systems

A Methodology for Uncertainty in Knowledge-Based Systems PDF Author: Kurt Weichselberger
Publisher: Lecture Notes in Artificial Intelligence
ISBN:
Category : Computers
Languages : en
Pages : 154

Get Book Here

Book Description
In this book the consequent use of probability theory is proposed for handling uncertainty in expert systems. It is shown that methods violating this suggestion may have dangerous consequences (e.g., the Dempster-Shafer rule and the method used in MYCIN). The necessity of some requirements for a correct combining of uncertain information in expert systems is demonstrated and suitable rules are provided. The possibility is taken into account that interval estimates are given instead of exact information about probabilities. For combining information containing interval estimates rules are provided which are useful in many cases.

Information Processing and Management of Uncertainty in Knowledge-Based Systems. Theory and Foundations

Information Processing and Management of Uncertainty in Knowledge-Based Systems. Theory and Foundations PDF Author: Jesús Medina
Publisher: Springer
ISBN: 3319914731
Category : Computers
Languages : en
Pages : 835

Get Book Here

Book Description
This three volume set (CCIS 853-855) constitutes the proceedings of the 17th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, IPMU 2017, held in Cádiz, Spain, in June 2018. The 193 revised full papers were carefully reviewed and selected from 383 submissions. The papers are organized in topical sections on advances on explainable artificial intelligence; aggregation operators, fuzzy metrics and applications; belief function theory and its applications; current techniques to model, process and describe time series; discrete models and computational intelligence; formal concept analysis and uncertainty; fuzzy implication functions; fuzzy logic and artificial intelligence problems; fuzzy mathematical analysis and applications; fuzzy methods in data mining and knowledge discovery; fuzzy transforms: theory and applications to data analysis and image processing; imprecise probabilities: foundations and applications; mathematical fuzzy logic, mathematical morphology; measures of comparison and entropies for fuzzy sets and their extensions; new trends in data aggregation; pre-aggregation functions and generalized forms of monotonicity; rough and fuzzy similarity modelling tools; soft computing for decision making in uncertainty; soft computing in information retrieval and sentiment analysis; tri-partitions and uncertainty; decision making modeling and applications; logical methods in mining knowledge from big data; metaheuristics and machine learning; optimization models for modern analytics; uncertainty in medicine; uncertainty in Video/Image Processing (UVIP).

Reasoning about Uncertainty, second edition

Reasoning about Uncertainty, second edition PDF Author: Joseph Y. Halpern
Publisher: MIT Press
ISBN: 0262533804
Category : Computers
Languages : en
Pages : 505

Get Book Here

Book Description
Formal ways of representing uncertainty and various logics for reasoning about it; updated with new material on weighted probability measures, complexity-theoretic considerations, and other topics. In order to deal with uncertainty intelligently, we need to be able to represent it and reason about it. In this book, Joseph Halpern examines formal ways of representing uncertainty and considers various logics for reasoning about it. While the ideas presented are formalized in terms of definitions and theorems, the emphasis is on the philosophy of representing and reasoning about uncertainty. Halpern surveys possible formal systems for representing uncertainty, including probability measures, possibility measures, and plausibility measures; considers the updating of beliefs based on changing information and the relation to Bayes' theorem; and discusses qualitative, quantitative, and plausibilistic Bayesian networks. This second edition has been updated to reflect Halpern's recent research. New material includes a consideration of weighted probability measures and how they can be used in decision making; analyses of the Doomsday argument and the Sleeping Beauty problem; modeling games with imperfect recall using the runs-and-systems approach; a discussion of complexity-theoretic considerations; the application of first-order conditional logic to security. Reasoning about Uncertainty is accessible and relevant to researchers and students in many fields, including computer science, artificial intelligence, economics (particularly game theory), mathematics, philosophy, and statistics.

Symbolic and Quantitative Approaches to Uncertainty

Symbolic and Quantitative Approaches to Uncertainty PDF Author: Rudolf Kruse
Publisher: Springer Science & Business Media
ISBN: 9783540546597
Category : Computers
Languages : en
Pages : 380

Get Book Here

Book Description
A variety of formalisms have been developed to address such aspects of handling imperfect knowledge as uncertainty, vagueness, imprecision, incompleteness, and partial inconsistency. Some of the most familiar approaches in this research field are nonmonotonic logics, modal logics, probability theory (Bayesian and non-Bayesian), belief function theory, and fuzzy sets and possibility theory. ESPRIT Basic Research Action 3085, entitled Defeasible Reasoning and Uncertainty Management Systems (DRUMS), aims to contribute to the elucidation of similarities and differences between these formalisms. It consists of 11 active European research groups. The European Conference on Symbolic and Quantitative Approaches to Uncertainty (ESQAU) provides a forum for these groups to meet and discuss their scientific results. This volume contains 42 contributions accepted for the ESQAU meeting held in October 1991 in Marseille, together with 12 articles presenting the activities of the DRUMS groups and two invited presentations.

Symbolic and Quantitative Approaches to Reasoning with Uncertainty

Symbolic and Quantitative Approaches to Reasoning with Uncertainty PDF Author: Gabriele Kern-Isberner
Publisher: Springer Nature
ISBN: 3030297659
Category : Computers
Languages : en
Pages : 516

Get Book Here

Book Description
This book constitutes the refereed proceedings of the 15th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty, ECSQARU 2019, held in Belgrade, Serbia, in September 2019. The 41 full papers presented together with 3 abstracts of invited talks inn this volume were carefully reviewed and selected from 62 submissions. The papers are organized in topical sections named: Argumentation; Belief Functions; Conditional, Default and Analogical Reasoning; Learning and Decision Making; Precise and Imprecise Probabilities; and Uncertain Reasoning for Applications.

Uncertainty in Artificial Intelligence

Uncertainty in Artificial Intelligence PDF Author: David Heckerman
Publisher: Morgan Kaufmann
ISBN: 1483214516
Category : Computers
Languages : en
Pages : 554

Get Book Here

Book Description
Uncertainty in Artificial Intelligence contains the proceedings of the Ninth Conference on Uncertainty in Artificial Intelligence held at the Catholic University of America in Washington, DC, on July 9-11, 1993. The papers focus on methods of reasoning and decision making under uncertainty as applied to problems in artificial intelligence (AI) and cover topics ranging from knowledge acquisition and automated model construction to learning, planning, temporal reasoning, and machine vision. Comprised of 66 chapters, this book begins with a discussion on causality in Bayesian belief networks before turning to a decision theoretic account of conditional ought statements that rectifies glaring deficiencies in classical deontic logic and forms a sound basis for qualitative decision theory. Subsequent chapters explore trade-offs in constructing and evaluating temporal influence diagrams; normative engineering risk management systems; additive belief-network models; and sensitivity analysis for probability assessments in Bayesian networks. Automated model construction and learning as well as algorithms for inference and decision making are also considered. This monograph will be of interest to both students and practitioners in the fields of AI and computer science.

U.S. Geological Survey Bulletin

U.S. Geological Survey Bulletin PDF Author:
Publisher:
ISBN:
Category : Geology
Languages : en
Pages : 470

Get Book Here

Book Description