Ultrafast Quantum Effects and Vibrational Dynamics in Organic and Biological Systems

Ultrafast Quantum Effects and Vibrational Dynamics in Organic and Biological Systems PDF Author: Sarah Elizabeth Morgan
Publisher: Springer
ISBN: 3319633996
Category : Science
Languages : en
Pages : 121

Get Book Here

Book Description
This thesis focuses on theoretical analysis of the sophisticated ultrafast optical experiments that probe the crucial first few picoseconds of quantum light harvesting, making an important contribution to quantum biology, an exciting new field at the intersection of condensed matter, physical chemistry and biology. It provides new insights into the role of vibrational dynamics during singlet fission of organic pentacene thin films, and targeting the importance of vibrational dynamics in the design of nanoscale organic light harvesting devices, it also develops a new wavelet analysis technique to probe vibronic dynamics in time-resolved nonlinear optical experiments. Lastly, the thesis explores the theory of how non-linear “breather” vibrations are excited and propagate in the disordered nanostructures of photosynthetic proteins.

Ultrafast Quantum Effects and Vibrational Dynamics in Organic and Biological Systems

Ultrafast Quantum Effects and Vibrational Dynamics in Organic and Biological Systems PDF Author: Sarah Elizabeth Morgan
Publisher: Springer
ISBN: 3319633996
Category : Science
Languages : en
Pages : 121

Get Book Here

Book Description
This thesis focuses on theoretical analysis of the sophisticated ultrafast optical experiments that probe the crucial first few picoseconds of quantum light harvesting, making an important contribution to quantum biology, an exciting new field at the intersection of condensed matter, physical chemistry and biology. It provides new insights into the role of vibrational dynamics during singlet fission of organic pentacene thin films, and targeting the importance of vibrational dynamics in the design of nanoscale organic light harvesting devices, it also develops a new wavelet analysis technique to probe vibronic dynamics in time-resolved nonlinear optical experiments. Lastly, the thesis explores the theory of how non-linear “breather” vibrations are excited and propagate in the disordered nanostructures of photosynthetic proteins.

Ultrafast Dynamics at the Nanoscale

Ultrafast Dynamics at the Nanoscale PDF Author: Stefan Haacke
Publisher: CRC Press
ISBN: 9814745340
Category : Science
Languages : en
Pages : 529

Get Book Here

Book Description
Ultrafast Dynamics at the Nanoscale provides a combined experimental and theoretical insight into the molecular-level investigation of light-induced quantum processes in biological systems and nanostructured (bio)assemblies. Topics include DNA photostability and repair, photoactive proteins, biological and artificial light-harvesting systems, plasmonic nanostructures, and organic photovoltaic materials, whose common denominator is the key importance of ultrafast quantum effects at the border between the molecular scale and the nanoscale. The functionality and control of these systems have been under intense investigation in recent years in view of developing a detailed understanding of ultrafast nanoscale energy and charge transfer, as well as fostering novel technologies based on sustainable energy resources. Both experiment and theory have made big strides toward meeting the challenge of these truly complex systems. This book, thus, introduces the reader to cutting-edge developments in ultrafast nonlinear optical spectroscopies and the quantum dynamical simulation of the observed dynamics, including direct simulations of two-dimensional optical experiments. Taken together, these techniques attempt to elucidate whether the quantum coherent nature of ultrafast events enhances the efficiency of the relevant processes and where the quantum–classical boundary sets in, in these high-dimensional biological and material systems. The chapters contain well-illustrated accounts of the authors’ research work, including didactic introductory material, and address a multidisciplinary audience from chemistry, physics, biology, and materials sciences. The book is, therefore, a must-have for graduate- and postgraduate-level researchers who wish to learn about molecular nanoscience from a combined spectroscopic and theoretical viewpoint.

Quantum Effects in Biology

Quantum Effects in Biology PDF Author: Masoud Mohseni
Publisher: Cambridge University Press
ISBN: 1107010802
Category : Science
Languages : en
Pages : 421

Get Book Here

Book Description
Explores the role of quantum mechanics in biology for advanced undergraduate and graduate students in physics, biology and chemistry.

Quantum Effects in the Dynamics of Biological Systems

Quantum Effects in the Dynamics of Biological Systems PDF Author: William Samuel Bialek
Publisher:
ISBN:
Category :
Languages : en
Pages : 532

Get Book Here

Book Description


Vibrational Dynamics Of Molecules

Vibrational Dynamics Of Molecules PDF Author: Joel M Bowman
Publisher: World Scientific
ISBN: 9811237921
Category : Science
Languages : en
Pages : 603

Get Book Here

Book Description
Vibrational Dynamics of Molecules represents the definitive concise text on the cutting-edge field of vibrational molecular chemistry. The chapter contributors are a Who's Who of world leaders in the field. The editor, Joel Bowman, is widely considered as one of the founding fathers of theoretical reaction dynamics. The included topics span the field, from fundamental theory such as collocation methods and vibrational CI methods, to interesting applications such as astrochemistry, supramolecular systems and virtual computational spectroscopy. This is a useful reference for theoretical chemists, spectroscopists, physicists, undergraduate and graduate students, lecturers and software developers.

Femtochemistry: Ultrafast Chemical And Physical Processes In Molecular Systems

Femtochemistry: Ultrafast Chemical And Physical Processes In Molecular Systems PDF Author: Majed Chergui
Publisher: World Scientific
ISBN: 981454826X
Category :
Languages : en
Pages : 718

Get Book Here

Book Description
This book highlights the latest experimental and theoretical developments in the field of femtochemistry, with papers describing the physics and chemistry of ultrafast processes in small molecules, complex molecular systems, clusters, biological systems, solids, matrices, liquids and at surfaces and interfaces. The recent developments in frequency-domain studies of femtodynamics are also presented. In addition, the latest achievements in femtosecond control of chemical reactions are presented, together with the newest techniques in real-time probing of reactions such as ultrafast x-ray or electron diffraction. The papers are rich in references giving a clearcut state-of-the-art of the topics being discussed. The book should be a valuable tool to all persons in the field and to young scientists.Contributors include: A H Zewail, J Jortner, V S Letokhov, J Manz, R S Berry, C Wittig, K B Eisenthal, A W Castleman Jr., J T Hynes, W H Gadzuk, R Kosloff, S Mukamel, K R Wilson; G Fleming, D Wiersma, K Yoshihara, V Sundström, A Apkarian, N Scherer, A Myers, R Schinke, J R Huber, R B Gerber, G Gerber and P M Champion.

Energy Transfer Dynamics in Biomaterial Systems

Energy Transfer Dynamics in Biomaterial Systems PDF Author: Irene Burghardt
Publisher: Springer Science & Business Media
ISBN: 3642023061
Category : Science
Languages : en
Pages : 476

Get Book Here

Book Description
The role of quantum coherence in promoting the e ciency of the initial stages of photosynthesis is an open and intriguing question. Lee, Cheng, and Fleming, Science 316, 1462 (2007) The understanding and design of functional biomaterials is one of today’s grand challenge areas that has sparked an intense exchange between biology, materials sciences, electronics, and various other disciplines. Many new - velopments are underway in organic photovoltaics, molecular electronics, and biomimetic research involving, e. g. , arti cal light-harvesting systems inspired by photosynthesis, along with a host of other concepts and device applications. In fact, materials scientists may well be advised to take advantage of Nature’s 3. 8 billion year head-start in designing new materials for light-harvesting and electro-optical applications. Since many of these developments reach into the molecular domain, the - derstanding of nano-structured functional materials equally necessitates f- damental aspects of molecular physics, chemistry, and biology. The elementary energy and charge transfer processes bear much similarity to the molecular phenomena that have been revealed in unprecedented detail by ultrafast op- cal spectroscopies. Indeed, these spectroscopies, which were initially developed and applied for the study of small molecular species, have already evolved into an invaluable tool to monitor ultrafast dynamics in complex biological and materials systems. The molecular-level phenomena in question are often of intrinsically quantum mechanical character, and involve tunneling, non-Born- Oppenheimer e ects, and quantum-mechanical phase coherence.

Ultrafast Dynamics at the Nanoscale

Ultrafast Dynamics at the Nanoscale PDF Author: Stefan Haacke
Publisher: CRC Press
ISBN: 1315340925
Category : Science
Languages : en
Pages : 550

Get Book Here

Book Description
Ultrafast Dynamics at the Nanoscale provides a combined experimental and theoretical insight into the molecular-level investigation of light-induced quantum processes in biological systems and nanostructured (bio)assemblies. Topics include DNA photostability and repair, photoactive proteins, biological and artificial light-harvesting systems, plasmonic nanostructures, and organic photovoltaic materials, whose common denominator is the key importance of ultrafast quantum effects at the border between the molecular scale and the nanoscale. The functionality and control of these systems have been under intense investigation in recent years in view of developing a detailed understanding of ultrafast nanoscale energy and charge transfer, as well as fostering novel technologies based on sustainable energy resources. Both experiment and theory have made big strides toward meeting the challenge of these truly complex systems. This book, thus, introduces the reader to cutting-edge developments in ultrafast nonlinear optical spectroscopies and the quantum dynamical simulation of the observed dynamics, including direct simulations of two-dimensional optical experiments. Taken together, these techniques attempt to elucidate whether the quantum coherent nature of ultrafast events enhances the efficiency of the relevant processes and where the quantum–classical boundary sets in, in these high-dimensional biological and material systems. The chapters contain well-illustrated accounts of the authors’ research work, including didactic introductory material, and address a multidisciplinary audience from chemistry, physics, biology, and materials sciences. The book is, therefore, a must-have for graduate- and postgraduate-level researchers who wish to learn about molecular nanoscience from a combined spectroscopic and theoretical viewpoint.

Molecular Quantum Dynamics

Molecular Quantum Dynamics PDF Author: Fabien Gatti
Publisher: Springer Science & Business Media
ISBN: 3642452906
Category : Science
Languages : en
Pages : 281

Get Book Here

Book Description
This book focuses on current applications of molecular quantum dynamics. Examples from all main subjects in the field, presented by the internationally renowned experts, illustrate the importance of the domain. Recent success in helping to understand experimental observations in fields like heterogeneous catalysis, photochemistry, reactive scattering, optical spectroscopy, or femto- and attosecond chemistry and spectroscopy underline that nuclear quantum mechanical effects affect many areas of chemical and physical research. In contrast to standard quantum chemistry calculations, where the nuclei are treated classically, molecular quantum dynamics can cover quantum mechanical effects in their motion. Many examples, ranging from fundamental to applied problems, are known today that are impacted by nuclear quantum mechanical effects, including phenomena like tunneling, zero point energy effects, or non-adiabatic transitions. Being important to correctly understand many observations in chemical, organic and biological systems, or for the understanding of molecular spectroscopy, the range of applications covered in this book comprises broad areas of science: from astrophysics and the physics and chemistry of the atmosphere, over elementary processes in chemistry, to biological processes (such as the first steps of photosynthesis or vision). Nevertheless, many researchers refrain from entering this domain. The book "Molecular Quantum Dynamics" offers them an accessible introduction. Although the calculation of large systems still presents a challenge - despite the considerable power of modern computers - new strategies have been developed to extend the studies to systems of increasing size. Such strategies are presented after a brief overview of the historical background. Strong emphasis is put on an educational presentation of the fundamental concepts, so that the reader can inform himself about the most important concepts, like eigenstates, wave packets, quantum mechanical resonances, entanglement, etc. The chosen examples highlight that high-level experiments and theory need to work closely together. This book thus is a must-read both for researchers working experimentally or theoretically in the concerned fields, and generally for anyone interested in the exciting world of molecular quantum dynamics.

Advances in the Theory of Quantum Systems in Chemistry and Physics

Advances in the Theory of Quantum Systems in Chemistry and Physics PDF Author: Philip E. Hoggan
Publisher: Springer Science & Business Media
ISBN: 9400720769
Category : Science
Languages : en
Pages : 630

Get Book Here

Book Description
Advances in the Theory of Quantum Systems in Chemistry and Physics is a collection of 32 selected papers from the scientific contributions presented at the 15th International Workshop on Quantum Systems in Chemistry and Physics (QSCP-XV), held at Magdalene College, Cambridge, UK, from August 31st to September 5th, 2010. This volume discusses the state of the art, new trends, and the future of methods in molecular quantum mechanics and their applications to a wide range of problems in chemistry, physics, and biology. The breadth and depth of the scientific topics discussed during QSCP-XV are gathered in seven sections: I. Fundamental Theory; II. Model Atoms; III. Atoms and Molecules with Exponential-Type Orbitals; IV. Density-Oriented Methods; V. Dynamics and Quantum Monte-Carlo Methodology; VI. Structure and Reactivity; VII. Complex Systems, Solids, Biophysics. Advances in the Theory of Quantum Systems in Chemistry and Physics is written for research students and professionals in Quantum systems of chemistry and physics. It also constitutes and invaluable guide for those wishing to familiarize themselves with research perspectives in the domain of quantum systems for thematic conversion or simply to gain insight into the methodological developments and applications to physics chemistry and biology that have actually become feasible by the end of 2010.