Author: Rajib Kumar De
Publisher: Orange Education Pvt Ltd
ISBN: 8197256225
Category : Computers
Languages : en
Pages : 380
Book Description
TAGLINE Empower Your Data Science Journey: From Exploration to Certification in Azure Machine Learning KEY FEATURES ● Offers deep dives into key areas such as data preparation, model training, and deployment, ensuring you master each concept. ● Covers all exam objectives in detail, ensuring a thorough understanding of each topic required for the DP-100 certification. ● Includes hands-on labs and practical examples to help you apply theoretical knowledge to real-world scenarios, enhancing your learning experience. DESCRIPTION Ultimate Azure Data Scientist Associate (DP-100) Certification Guide is your essential resource for achieving the Microsoft Azure Data Scientist Associate certification. This guide covers all exam objectives, helping you design and prepare machine learning solutions, explore data, train models, and manage deployment and retraining processes. The book starts with the basics and advances through hands-on exercises and real-world projects, to help you gain practical experience with Azure's tools and services. The book features certification-oriented Q&A challenges that mirror the actual exam, with detailed explanations to help you thoroughly grasp each topic. Perfect for aspiring data scientists, IT professionals, and analysts, this comprehensive guide equips you with the expertise to excel in the DP-100 exam and advance your data science career. WHAT WILL YOU LEARN ● Design and prepare effective machine learning solutions in Microsoft Azure. ● Learn to develop complete machine learning training pipelines, with or without code. ● Explore data, train models, and validate ML pipelines efficiently. ● Deploy, manage, and optimize machine learning models in Azure. ● Utilize Azure's suite of data science tools and services, including Prompt Flow, Model Catalog, and AI Studio. ● Apply real-world data science techniques to business problems. ● Confidently tackle DP-100 certification exam questions and scenarios. WHO IS THIS BOOK FOR? This book is for aspiring Data Scientists, IT Professionals, Developers, Data Analysts, Students, and Business Professionals aiming to Master Azure Data Science. Prior knowledge of basic Data Science concepts and programming, particularly in Python, will be beneficial for making the most of this comprehensive guide. TABLE OF CONTENTS 1. Introduction to Data Science and Azure 2. Setting Up Your Azure Environment 3. Data Ingestion and Storage in Azure 4. Data Transformation and Cleaning 5. Introduction to Machine Learning 6. Azure Machine Learning Studio 7. Model Deployment and Monitoring 8. Embracing AI Revolution Azure 9. Responsible AI and Ethics 10. Big Data Analytics with Azure 11. Real-World Applications and Case Studies 12. Conclusion and Next Steps Index
Ultimate Azure Data Scientist Associate (DP-100) Certification Guide
Author: Rajib Kumar De
Publisher: Orange Education Pvt Ltd
ISBN: 8197256225
Category : Computers
Languages : en
Pages : 380
Book Description
TAGLINE Empower Your Data Science Journey: From Exploration to Certification in Azure Machine Learning KEY FEATURES ● Offers deep dives into key areas such as data preparation, model training, and deployment, ensuring you master each concept. ● Covers all exam objectives in detail, ensuring a thorough understanding of each topic required for the DP-100 certification. ● Includes hands-on labs and practical examples to help you apply theoretical knowledge to real-world scenarios, enhancing your learning experience. DESCRIPTION Ultimate Azure Data Scientist Associate (DP-100) Certification Guide is your essential resource for achieving the Microsoft Azure Data Scientist Associate certification. This guide covers all exam objectives, helping you design and prepare machine learning solutions, explore data, train models, and manage deployment and retraining processes. The book starts with the basics and advances through hands-on exercises and real-world projects, to help you gain practical experience with Azure's tools and services. The book features certification-oriented Q&A challenges that mirror the actual exam, with detailed explanations to help you thoroughly grasp each topic. Perfect for aspiring data scientists, IT professionals, and analysts, this comprehensive guide equips you with the expertise to excel in the DP-100 exam and advance your data science career. WHAT WILL YOU LEARN ● Design and prepare effective machine learning solutions in Microsoft Azure. ● Learn to develop complete machine learning training pipelines, with or without code. ● Explore data, train models, and validate ML pipelines efficiently. ● Deploy, manage, and optimize machine learning models in Azure. ● Utilize Azure's suite of data science tools and services, including Prompt Flow, Model Catalog, and AI Studio. ● Apply real-world data science techniques to business problems. ● Confidently tackle DP-100 certification exam questions and scenarios. WHO IS THIS BOOK FOR? This book is for aspiring Data Scientists, IT Professionals, Developers, Data Analysts, Students, and Business Professionals aiming to Master Azure Data Science. Prior knowledge of basic Data Science concepts and programming, particularly in Python, will be beneficial for making the most of this comprehensive guide. TABLE OF CONTENTS 1. Introduction to Data Science and Azure 2. Setting Up Your Azure Environment 3. Data Ingestion and Storage in Azure 4. Data Transformation and Cleaning 5. Introduction to Machine Learning 6. Azure Machine Learning Studio 7. Model Deployment and Monitoring 8. Embracing AI Revolution Azure 9. Responsible AI and Ethics 10. Big Data Analytics with Azure 11. Real-World Applications and Case Studies 12. Conclusion and Next Steps Index
Publisher: Orange Education Pvt Ltd
ISBN: 8197256225
Category : Computers
Languages : en
Pages : 380
Book Description
TAGLINE Empower Your Data Science Journey: From Exploration to Certification in Azure Machine Learning KEY FEATURES ● Offers deep dives into key areas such as data preparation, model training, and deployment, ensuring you master each concept. ● Covers all exam objectives in detail, ensuring a thorough understanding of each topic required for the DP-100 certification. ● Includes hands-on labs and practical examples to help you apply theoretical knowledge to real-world scenarios, enhancing your learning experience. DESCRIPTION Ultimate Azure Data Scientist Associate (DP-100) Certification Guide is your essential resource for achieving the Microsoft Azure Data Scientist Associate certification. This guide covers all exam objectives, helping you design and prepare machine learning solutions, explore data, train models, and manage deployment and retraining processes. The book starts with the basics and advances through hands-on exercises and real-world projects, to help you gain practical experience with Azure's tools and services. The book features certification-oriented Q&A challenges that mirror the actual exam, with detailed explanations to help you thoroughly grasp each topic. Perfect for aspiring data scientists, IT professionals, and analysts, this comprehensive guide equips you with the expertise to excel in the DP-100 exam and advance your data science career. WHAT WILL YOU LEARN ● Design and prepare effective machine learning solutions in Microsoft Azure. ● Learn to develop complete machine learning training pipelines, with or without code. ● Explore data, train models, and validate ML pipelines efficiently. ● Deploy, manage, and optimize machine learning models in Azure. ● Utilize Azure's suite of data science tools and services, including Prompt Flow, Model Catalog, and AI Studio. ● Apply real-world data science techniques to business problems. ● Confidently tackle DP-100 certification exam questions and scenarios. WHO IS THIS BOOK FOR? This book is for aspiring Data Scientists, IT Professionals, Developers, Data Analysts, Students, and Business Professionals aiming to Master Azure Data Science. Prior knowledge of basic Data Science concepts and programming, particularly in Python, will be beneficial for making the most of this comprehensive guide. TABLE OF CONTENTS 1. Introduction to Data Science and Azure 2. Setting Up Your Azure Environment 3. Data Ingestion and Storage in Azure 4. Data Transformation and Cleaning 5. Introduction to Machine Learning 6. Azure Machine Learning Studio 7. Model Deployment and Monitoring 8. Embracing AI Revolution Azure 9. Responsible AI and Ethics 10. Big Data Analytics with Azure 11. Real-World Applications and Case Studies 12. Conclusion and Next Steps Index
Azure Data Scientist Associate Certification Guide
Author: Andreas Botsikas
Publisher: Packt Publishing Ltd
ISBN: 1800561261
Category : Computers
Languages : en
Pages : 448
Book Description
Develop the skills you need to run machine learning workloads in Azure and pass the DP-100 exam with ease Key FeaturesCreate end-to-end machine learning training pipelines, with or without codeTrack experiment progress using the cloud-based MLflow-compatible process of Azure ML servicesOperationalize your machine learning models by creating batch and real-time endpointsBook Description The Azure Data Scientist Associate Certification Guide helps you acquire practical knowledge for machine learning experimentation on Azure. It covers everything you need to pass the DP-100 exam and become a certified Azure Data Scientist Associate. Starting with an introduction to data science, you'll learn the terminology that will be used throughout the book and then move on to the Azure Machine Learning (Azure ML) workspace. You'll discover the studio interface and manage various components, such as data stores and compute clusters. Next, the book focuses on no-code and low-code experimentation, and shows you how to use the Automated ML wizard to locate and deploy optimal models for your dataset. You'll also learn how to run end-to-end data science experiments using the designer provided in Azure ML Studio. You'll then explore the Azure ML Software Development Kit (SDK) for Python and advance to creating experiments and publishing models using code. The book also guides you in optimizing your model's hyperparameters using Hyperdrive before demonstrating how to use responsible AI tools to interpret and debug your models. Once you have a trained model, you'll learn to operationalize it for batch or real-time inferences and monitor it in production. By the end of this Azure certification study guide, you'll have gained the knowledge and the practical skills required to pass the DP-100 exam. What you will learnCreate a working environment for data science workloads on AzureRun data experiments using Azure Machine Learning servicesCreate training and inference pipelines using the designer or codeDiscover the best model for your dataset using Automated MLUse hyperparameter tuning to optimize trained modelsDeploy, use, and monitor models in productionInterpret the predictions of a trained modelWho this book is for This book is for developers who want to infuse their applications with AI capabilities and data scientists looking to scale their machine learning experiments in the Azure cloud. Basic knowledge of Python is needed to follow the code samples used in the book. Some experience in training machine learning models in Python using common frameworks like scikit-learn will help you understand the content more easily.
Publisher: Packt Publishing Ltd
ISBN: 1800561261
Category : Computers
Languages : en
Pages : 448
Book Description
Develop the skills you need to run machine learning workloads in Azure and pass the DP-100 exam with ease Key FeaturesCreate end-to-end machine learning training pipelines, with or without codeTrack experiment progress using the cloud-based MLflow-compatible process of Azure ML servicesOperationalize your machine learning models by creating batch and real-time endpointsBook Description The Azure Data Scientist Associate Certification Guide helps you acquire practical knowledge for machine learning experimentation on Azure. It covers everything you need to pass the DP-100 exam and become a certified Azure Data Scientist Associate. Starting with an introduction to data science, you'll learn the terminology that will be used throughout the book and then move on to the Azure Machine Learning (Azure ML) workspace. You'll discover the studio interface and manage various components, such as data stores and compute clusters. Next, the book focuses on no-code and low-code experimentation, and shows you how to use the Automated ML wizard to locate and deploy optimal models for your dataset. You'll also learn how to run end-to-end data science experiments using the designer provided in Azure ML Studio. You'll then explore the Azure ML Software Development Kit (SDK) for Python and advance to creating experiments and publishing models using code. The book also guides you in optimizing your model's hyperparameters using Hyperdrive before demonstrating how to use responsible AI tools to interpret and debug your models. Once you have a trained model, you'll learn to operationalize it for batch or real-time inferences and monitor it in production. By the end of this Azure certification study guide, you'll have gained the knowledge and the practical skills required to pass the DP-100 exam. What you will learnCreate a working environment for data science workloads on AzureRun data experiments using Azure Machine Learning servicesCreate training and inference pipelines using the designer or codeDiscover the best model for your dataset using Automated MLUse hyperparameter tuning to optimize trained modelsDeploy, use, and monitor models in productionInterpret the predictions of a trained modelWho this book is for This book is for developers who want to infuse their applications with AI capabilities and data scientists looking to scale their machine learning experiments in the Azure cloud. Basic knowledge of Python is needed to follow the code samples used in the book. Some experience in training machine learning models in Python using common frameworks like scikit-learn will help you understand the content more easily.
Azure Data Engineer Associate Certification Guide
Author: Newton Alex
Publisher: Packt Publishing Ltd
ISBN: 1801812837
Category : Computers
Languages : en
Pages : 574
Book Description
Become well-versed with data engineering concepts and exam objectives to achieve Azure Data Engineer Associate certification Key Features Understand and apply data engineering concepts to real-world problems and prepare for the DP-203 certification exam Explore the various Azure services for building end-to-end data solutions Gain a solid understanding of building secure and sustainable data solutions using Azure services Book DescriptionAzure is one of the leading cloud providers in the world, providing numerous services for data hosting and data processing. Most of the companies today are either cloud-native or are migrating to the cloud much faster than ever. This has led to an explosion of data engineering jobs, with aspiring and experienced data engineers trying to outshine each other. Gaining the DP-203: Azure Data Engineer Associate certification is a sure-fire way of showing future employers that you have what it takes to become an Azure Data Engineer. This book will help you prepare for the DP-203 examination in a structured way, covering all the topics specified in the syllabus with detailed explanations and exam tips. The book starts by covering the fundamentals of Azure, and then takes the example of a hypothetical company and walks you through the various stages of building data engineering solutions. Throughout the chapters, you'll learn about the various Azure components involved in building the data systems and will explore them using a wide range of real-world use cases. Finally, you’ll work on sample questions and answers to familiarize yourself with the pattern of the exam. By the end of this Azure book, you'll have gained the confidence you need to pass the DP-203 exam with ease and land your dream job in data engineering.What you will learn Gain intermediate-level knowledge of Azure the data infrastructure Design and implement data lake solutions with batch and stream pipelines Identify the partition strategies available in Azure storage technologies Implement different table geometries in Azure Synapse Analytics Use the transformations available in T-SQL, Spark, and Azure Data Factory Use Azure Databricks or Synapse Spark to process data using Notebooks Design security using RBAC, ACL, encryption, data masking, and more Monitor and optimize data pipelines with debugging tips Who this book is for This book is for data engineers who want to take the DP-203: Azure Data Engineer Associate exam and are looking to gain in-depth knowledge of the Azure cloud stack. The book will also help engineers and product managers who are new to Azure or interviewing with companies working on Azure technologies, to get hands-on experience of Azure data technologies. A basic understanding of cloud technologies, extract, transform, and load (ETL), and databases will help you get the most out of this book.
Publisher: Packt Publishing Ltd
ISBN: 1801812837
Category : Computers
Languages : en
Pages : 574
Book Description
Become well-versed with data engineering concepts and exam objectives to achieve Azure Data Engineer Associate certification Key Features Understand and apply data engineering concepts to real-world problems and prepare for the DP-203 certification exam Explore the various Azure services for building end-to-end data solutions Gain a solid understanding of building secure and sustainable data solutions using Azure services Book DescriptionAzure is one of the leading cloud providers in the world, providing numerous services for data hosting and data processing. Most of the companies today are either cloud-native or are migrating to the cloud much faster than ever. This has led to an explosion of data engineering jobs, with aspiring and experienced data engineers trying to outshine each other. Gaining the DP-203: Azure Data Engineer Associate certification is a sure-fire way of showing future employers that you have what it takes to become an Azure Data Engineer. This book will help you prepare for the DP-203 examination in a structured way, covering all the topics specified in the syllabus with detailed explanations and exam tips. The book starts by covering the fundamentals of Azure, and then takes the example of a hypothetical company and walks you through the various stages of building data engineering solutions. Throughout the chapters, you'll learn about the various Azure components involved in building the data systems and will explore them using a wide range of real-world use cases. Finally, you’ll work on sample questions and answers to familiarize yourself with the pattern of the exam. By the end of this Azure book, you'll have gained the confidence you need to pass the DP-203 exam with ease and land your dream job in data engineering.What you will learn Gain intermediate-level knowledge of Azure the data infrastructure Design and implement data lake solutions with batch and stream pipelines Identify the partition strategies available in Azure storage technologies Implement different table geometries in Azure Synapse Analytics Use the transformations available in T-SQL, Spark, and Azure Data Factory Use Azure Databricks or Synapse Spark to process data using Notebooks Design security using RBAC, ACL, encryption, data masking, and more Monitor and optimize data pipelines with debugging tips Who this book is for This book is for data engineers who want to take the DP-203: Azure Data Engineer Associate exam and are looking to gain in-depth knowledge of the Azure cloud stack. The book will also help engineers and product managers who are new to Azure or interviewing with companies working on Azure technologies, to get hands-on experience of Azure data technologies. A basic understanding of cloud technologies, extract, transform, and load (ETL), and databases will help you get the most out of this book.
Exam DP-100: Azure Data Scientist Associate 48 Test Prep Questions
Author: Ger Arevalo
Publisher: Ger Arevalo
ISBN:
Category : Computers
Languages : en
Pages : 16
Book Description
This book is designed to be an ancillary to the classes, labs, and hands on practice that you have diligently worked on in preparing to obtain your DP-100: Azure Data Scientist Associate certification. I won’t bother talking about the benefits of certifications. This book tries to reinforce the knowledge that you have gained in your process of studying. It is meant as one of the end steps in your preparation for the DP-100 exam. This book is short, but It will give you a good gauge of your readiness. Learning can be seen in 4 stages: 1. Unconscious Incompetence 2. Conscious Incompetence 3. Conscious Competence 4. Unconscious Competence This book will assume the reader has already gone through the needed classes, labs, and practice. It is meant to take the reader from stage 2, Conscious Incompetence, to stage 3 Conscious Competence. At stage 3, you should be ready to take the exam. Only real-world scenarios and work experience will take you to stage 4, Unconscious Competence. Before we get started, we all have doubts when preparing to take an exam. What is your reason and purpose for taking this exam? Remember your reason and purpose when you have some doubts. Obstacle is the way. Control your mind, attitude, and you can control the situation. Persistence leads to confidence. Confidence erases doubts.
Publisher: Ger Arevalo
ISBN:
Category : Computers
Languages : en
Pages : 16
Book Description
This book is designed to be an ancillary to the classes, labs, and hands on practice that you have diligently worked on in preparing to obtain your DP-100: Azure Data Scientist Associate certification. I won’t bother talking about the benefits of certifications. This book tries to reinforce the knowledge that you have gained in your process of studying. It is meant as one of the end steps in your preparation for the DP-100 exam. This book is short, but It will give you a good gauge of your readiness. Learning can be seen in 4 stages: 1. Unconscious Incompetence 2. Conscious Incompetence 3. Conscious Competence 4. Unconscious Competence This book will assume the reader has already gone through the needed classes, labs, and practice. It is meant to take the reader from stage 2, Conscious Incompetence, to stage 3 Conscious Competence. At stage 3, you should be ready to take the exam. Only real-world scenarios and work experience will take you to stage 4, Unconscious Competence. Before we get started, we all have doubts when preparing to take an exam. What is your reason and purpose for taking this exam? Remember your reason and purpose when you have some doubts. Obstacle is the way. Control your mind, attitude, and you can control the situation. Persistence leads to confidence. Confidence erases doubts.
Spark: The Definitive Guide
Author: Bill Chambers
Publisher: "O'Reilly Media, Inc."
ISBN: 1491912294
Category : Computers
Languages : en
Pages : 594
Book Description
Learn how to use, deploy, and maintain Apache Spark with this comprehensive guide, written by the creators of the open-source cluster-computing framework. With an emphasis on improvements and new features in Spark 2.0, authors Bill Chambers and Matei Zaharia break down Spark topics into distinct sections, each with unique goals. Youâ??ll explore the basic operations and common functions of Sparkâ??s structured APIs, as well as Structured Streaming, a new high-level API for building end-to-end streaming applications. Developers and system administrators will learn the fundamentals of monitoring, tuning, and debugging Spark, and explore machine learning techniques and scenarios for employing MLlib, Sparkâ??s scalable machine-learning library. Get a gentle overview of big data and Spark Learn about DataFrames, SQL, and Datasetsâ??Sparkâ??s core APIsâ??through worked examples Dive into Sparkâ??s low-level APIs, RDDs, and execution of SQL and DataFrames Understand how Spark runs on a cluster Debug, monitor, and tune Spark clusters and applications Learn the power of Structured Streaming, Sparkâ??s stream-processing engine Learn how you can apply MLlib to a variety of problems, including classification or recommendation
Publisher: "O'Reilly Media, Inc."
ISBN: 1491912294
Category : Computers
Languages : en
Pages : 594
Book Description
Learn how to use, deploy, and maintain Apache Spark with this comprehensive guide, written by the creators of the open-source cluster-computing framework. With an emphasis on improvements and new features in Spark 2.0, authors Bill Chambers and Matei Zaharia break down Spark topics into distinct sections, each with unique goals. Youâ??ll explore the basic operations and common functions of Sparkâ??s structured APIs, as well as Structured Streaming, a new high-level API for building end-to-end streaming applications. Developers and system administrators will learn the fundamentals of monitoring, tuning, and debugging Spark, and explore machine learning techniques and scenarios for employing MLlib, Sparkâ??s scalable machine-learning library. Get a gentle overview of big data and Spark Learn about DataFrames, SQL, and Datasetsâ??Sparkâ??s core APIsâ??through worked examples Dive into Sparkâ??s low-level APIs, RDDs, and execution of SQL and DataFrames Understand how Spark runs on a cluster Debug, monitor, and tune Spark clusters and applications Learn the power of Structured Streaming, Sparkâ??s stream-processing engine Learn how you can apply MLlib to a variety of problems, including classification or recommendation
Introducing MLOps
Author: Mark Treveil
Publisher: "O'Reilly Media, Inc."
ISBN: 1098116429
Category : Computers
Languages : en
Pages : 163
Book Description
More than half of the analytics and machine learning (ML) models created by organizations today never make it into production. Some of the challenges and barriers to operationalization are technical, but others are organizational. Either way, the bottom line is that models not in production can't provide business impact. This book introduces the key concepts of MLOps to help data scientists and application engineers not only operationalize ML models to drive real business change but also maintain and improve those models over time. Through lessons based on numerous MLOps applications around the world, nine experts in machine learning provide insights into the five steps of the model life cycle--Build, Preproduction, Deployment, Monitoring, and Governance--uncovering how robust MLOps processes can be infused throughout. This book helps you: Fulfill data science value by reducing friction throughout ML pipelines and workflows Refine ML models through retraining, periodic tuning, and complete remodeling to ensure long-term accuracy Design the MLOps life cycle to minimize organizational risks with models that are unbiased, fair, and explainable Operationalize ML models for pipeline deployment and for external business systems that are more complex and less standardized
Publisher: "O'Reilly Media, Inc."
ISBN: 1098116429
Category : Computers
Languages : en
Pages : 163
Book Description
More than half of the analytics and machine learning (ML) models created by organizations today never make it into production. Some of the challenges and barriers to operationalization are technical, but others are organizational. Either way, the bottom line is that models not in production can't provide business impact. This book introduces the key concepts of MLOps to help data scientists and application engineers not only operationalize ML models to drive real business change but also maintain and improve those models over time. Through lessons based on numerous MLOps applications around the world, nine experts in machine learning provide insights into the five steps of the model life cycle--Build, Preproduction, Deployment, Monitoring, and Governance--uncovering how robust MLOps processes can be infused throughout. This book helps you: Fulfill data science value by reducing friction throughout ML pipelines and workflows Refine ML models through retraining, periodic tuning, and complete remodeling to ensure long-term accuracy Design the MLOps life cycle to minimize organizational risks with models that are unbiased, fair, and explainable Operationalize ML models for pipeline deployment and for external business systems that are more complex and less standardized
Microsoft Azure Machine Learning
Author: Sumit Mund
Publisher: Packt Publishing Ltd
ISBN: 1784398519
Category : Computers
Languages : en
Pages : 212
Book Description
This book provides you with the skills necessary to get started with Azure Machine Learning to build predictive models as quickly as possible, in a very intuitive way, whether you are completely new to predictive analysis or an existing practitioner. The book starts by exploring ML Studio, the browser-based development environment, and explores the first step—data exploration and visualization. You will then build different predictive models using both supervised and unsupervised algorithms, including a simple recommender system. The focus then shifts to learning how to deploy a model to production and publishing it as an API. The book ends with a couple of case studies using all the concepts and skills you have learned throughout the book to solve real-world problems.
Publisher: Packt Publishing Ltd
ISBN: 1784398519
Category : Computers
Languages : en
Pages : 212
Book Description
This book provides you with the skills necessary to get started with Azure Machine Learning to build predictive models as quickly as possible, in a very intuitive way, whether you are completely new to predictive analysis or an existing practitioner. The book starts by exploring ML Studio, the browser-based development environment, and explores the first step—data exploration and visualization. You will then build different predictive models using both supervised and unsupervised algorithms, including a simple recommender system. The focus then shifts to learning how to deploy a model to production and publishing it as an API. The book ends with a couple of case studies using all the concepts and skills you have learned throughout the book to solve real-world problems.
Exam Ref DP-900 Microsoft Azure Data Fundamentals
Author: Daniel A. Seara
Publisher: Microsoft Press
ISBN: 0137252102
Category : Computers
Languages : en
Pages : 623
Book Description
Prepare for Microsoft Exam DP-900 Demonstrate your real-world foundational knowledge of core data concepts and how they are implemented using Microsoft Azure data services. Designed for business users, functional consultants, and other professionals, this Exam Ref focuses on the critical thinking and decision-making acumen needed for success at the Microsoft Certified: Azure Data Fundamentals level. Focus on the expertise measured by these objectives: Describe core data concepts Describe how to work with relational data on Azure Describe how to work with non-relational data on Azure Describe an analytics workload on Azure This Microsoft Exam Ref: Organizes its coverage by exam objectives Features strategic, what-if scenarios to challenge you Assumes you have foundational knowledge of core data concepts and their implementation with Microsoft Azure data services, and are beginning to work with data in the cloud About the Exam Exam DP-900 focuses on core knowledge for describing fundamental database concepts and skills for cloud environments; cloud data services within Azure; cloud data roles, tasks, and responsibilities; Azure relational and non-relational data offerings, provisioning, and deployment; querying Azure relational databases; working with Azure non-relational data stores; building modern Azure data analytics solutions; and exploring Azure Data Factory, Azure Synapse Analytics, Azure Databricks, and Azure HDInsight. About Microsoft Certification Passing this exam fulfills your requirements for the Microsoft Certified: Azure Data Fundamentals certification, demonstrating your understanding of the core capabilities of Azure data services and their use with relational data, non-relational data, and analytics workloads. See full details at: www.microsoft.com/learn
Publisher: Microsoft Press
ISBN: 0137252102
Category : Computers
Languages : en
Pages : 623
Book Description
Prepare for Microsoft Exam DP-900 Demonstrate your real-world foundational knowledge of core data concepts and how they are implemented using Microsoft Azure data services. Designed for business users, functional consultants, and other professionals, this Exam Ref focuses on the critical thinking and decision-making acumen needed for success at the Microsoft Certified: Azure Data Fundamentals level. Focus on the expertise measured by these objectives: Describe core data concepts Describe how to work with relational data on Azure Describe how to work with non-relational data on Azure Describe an analytics workload on Azure This Microsoft Exam Ref: Organizes its coverage by exam objectives Features strategic, what-if scenarios to challenge you Assumes you have foundational knowledge of core data concepts and their implementation with Microsoft Azure data services, and are beginning to work with data in the cloud About the Exam Exam DP-900 focuses on core knowledge for describing fundamental database concepts and skills for cloud environments; cloud data services within Azure; cloud data roles, tasks, and responsibilities; Azure relational and non-relational data offerings, provisioning, and deployment; querying Azure relational databases; working with Azure non-relational data stores; building modern Azure data analytics solutions; and exploring Azure Data Factory, Azure Synapse Analytics, Azure Databricks, and Azure HDInsight. About Microsoft Certification Passing this exam fulfills your requirements for the Microsoft Certified: Azure Data Fundamentals certification, demonstrating your understanding of the core capabilities of Azure data services and their use with relational data, non-relational data, and analytics workloads. See full details at: www.microsoft.com/learn
AWS Certified Machine Learning Study Guide
Author: Shreyas Subramanian
Publisher: John Wiley & Sons
ISBN: 1119821010
Category : Computers
Languages : en
Pages : 382
Book Description
Succeed on the AWS Machine Learning exam or in your next job as a machine learning specialist on the AWS Cloud platform with this hands-on guide As the most popular cloud service in the world today, Amazon Web Services offers a wide range of opportunities for those interested in the development and deployment of artificial intelligence and machine learning business solutions. The AWS Certified Machine Learning Study Guide: Specialty (MLS-CO1) Exam delivers hyper-focused, authoritative instruction for anyone considering the pursuit of the prestigious Amazon Web Services Machine Learning certification or a new career as a machine learning specialist working within the AWS architecture. From exam to interview to your first day on the job, this study guide provides the domain-by-domain specific knowledge you need to build, train, tune, and deploy machine learning models with the AWS Cloud. And with the practice exams and assessments, electronic flashcards, and supplementary online resources that accompany this Study Guide, you’ll be prepared for success in every subject area covered by the exam. You’ll also find: An intuitive and organized layout perfect for anyone taking the exam for the first time or seasoned professionals seeking a refresher on machine learning on the AWS Cloud Authoritative instruction on a widely recognized certification that unlocks countless career opportunities in machine learning and data science Access to the Sybex online learning resources and test bank, with chapter review questions, a full-length practice exam, hundreds of electronic flashcards, and a glossary of key terms AWS Certified Machine Learning Study Guide: Specialty (MLS-CO1) Exam is an indispensable guide for anyone seeking to prepare themselves for success on the AWS Certified Machine Learning Specialty exam or for a job interview in the field of machine learning, or who wishes to improve their skills in the field as they pursue a career in AWS machine learning.
Publisher: John Wiley & Sons
ISBN: 1119821010
Category : Computers
Languages : en
Pages : 382
Book Description
Succeed on the AWS Machine Learning exam or in your next job as a machine learning specialist on the AWS Cloud platform with this hands-on guide As the most popular cloud service in the world today, Amazon Web Services offers a wide range of opportunities for those interested in the development and deployment of artificial intelligence and machine learning business solutions. The AWS Certified Machine Learning Study Guide: Specialty (MLS-CO1) Exam delivers hyper-focused, authoritative instruction for anyone considering the pursuit of the prestigious Amazon Web Services Machine Learning certification or a new career as a machine learning specialist working within the AWS architecture. From exam to interview to your first day on the job, this study guide provides the domain-by-domain specific knowledge you need to build, train, tune, and deploy machine learning models with the AWS Cloud. And with the practice exams and assessments, electronic flashcards, and supplementary online resources that accompany this Study Guide, you’ll be prepared for success in every subject area covered by the exam. You’ll also find: An intuitive and organized layout perfect for anyone taking the exam for the first time or seasoned professionals seeking a refresher on machine learning on the AWS Cloud Authoritative instruction on a widely recognized certification that unlocks countless career opportunities in machine learning and data science Access to the Sybex online learning resources and test bank, with chapter review questions, a full-length practice exam, hundreds of electronic flashcards, and a glossary of key terms AWS Certified Machine Learning Study Guide: Specialty (MLS-CO1) Exam is an indispensable guide for anyone seeking to prepare themselves for success on the AWS Certified Machine Learning Specialty exam or for a job interview in the field of machine learning, or who wishes to improve their skills in the field as they pursue a career in AWS machine learning.
Exam Ref AZ-900 Microsoft Azure Fundamentals
Author: Jim Cheshire
Publisher: Microsoft Press
ISBN: 013795526X
Category : Computers
Languages : en
Pages : 353
Book Description
Prepare for the updated version of Microsoft Exam AZ-900 and help demonstrate your real-world knowledge of cloud services and how they can be provided with Microsoft Azure, including high-level concepts that apply throughout Azure, and key concepts specific to individual services. Designed for professionals in both non-technical or technical roles, this Exam Ref focuses on the critical thinking and decision-making acumen needed for success at the Microsoft Certified Fundamentals level. Focus on the expertise measured by these objectives: Describe cloud concepts Describe Azure architecture and services Describe Azure management and governance This Microsoft Exam Ref: Organizes its coverage by exam objectives Features strategic, what-if scenarios to challenge you Assumes you want to show foundational knowledge of cloud services and their delivery with Microsoft Azure About the Exam Exam AZ-900 focuses on knowledge needed to describe cloud computing; the benefits of using cloud services; cloud service types; core Azure architectural components; Azure compute, networking, and storage services; Azure identity, access, and security; Azure cost management; Azure features and tools for governance and compliance, and for managing and deploying resources; and Azure monitoring tools. About Microsoft Certification Passing this exam fulfills your requirements for the Microsoft Certified: Azure Fundamentals credential, validating your basic knowledge of cloud services and how those services are provided with Azure. Whether you're new to the fi eld or a seasoned professional, demonstrating this knowledge can help you jump-start your career and prepare you to dive deeper into the many technical opportunities Azure offers.
Publisher: Microsoft Press
ISBN: 013795526X
Category : Computers
Languages : en
Pages : 353
Book Description
Prepare for the updated version of Microsoft Exam AZ-900 and help demonstrate your real-world knowledge of cloud services and how they can be provided with Microsoft Azure, including high-level concepts that apply throughout Azure, and key concepts specific to individual services. Designed for professionals in both non-technical or technical roles, this Exam Ref focuses on the critical thinking and decision-making acumen needed for success at the Microsoft Certified Fundamentals level. Focus on the expertise measured by these objectives: Describe cloud concepts Describe Azure architecture and services Describe Azure management and governance This Microsoft Exam Ref: Organizes its coverage by exam objectives Features strategic, what-if scenarios to challenge you Assumes you want to show foundational knowledge of cloud services and their delivery with Microsoft Azure About the Exam Exam AZ-900 focuses on knowledge needed to describe cloud computing; the benefits of using cloud services; cloud service types; core Azure architectural components; Azure compute, networking, and storage services; Azure identity, access, and security; Azure cost management; Azure features and tools for governance and compliance, and for managing and deploying resources; and Azure monitoring tools. About Microsoft Certification Passing this exam fulfills your requirements for the Microsoft Certified: Azure Fundamentals credential, validating your basic knowledge of cloud services and how those services are provided with Azure. Whether you're new to the fi eld or a seasoned professional, demonstrating this knowledge can help you jump-start your career and prepare you to dive deeper into the many technical opportunities Azure offers.