Ubiquitination Governing DNA Repair

Ubiquitination Governing DNA Repair PDF Author: Effrossyni Boutou
Publisher: BoD – Books on Demand
ISBN: 1789235847
Category : Science
Languages : en
Pages : 221

Get Book Here

Book Description
DNA damage response (DDR) and lesion repair are vital processes ensuring genome integrity through various pathways depending mainly on the nature of DNA injury and cell cycle stage. DDR is finely regulated at many levels in co-ordination with other ongoing processes as is genome replication and cell cycle progression. Posttranslational modifications (PTMs), affecting both protein-protein and protein-DNA interactions, play a crucial role in finely tuning all processes involved in the restoration of genome lesions. Regarding damaged chromatin, PTMs serve in many cases as recruitment platforms for DNA repair mechanisms by facilitating binding sites or regulating interactions between involved proteins. Ubiquitination, the addition of ubiquitin moieties on a target protein, apart from controlling protein availability through degradation, is also involved, together with partner small ubiquitin-like modifier (SUMO), in controlling many pathways involved in DDR by modifying the structure-function relationship and thus interacting with partner molecules. The aim of this book is to cover a broad spectrum of current topics in ubiquitination and to a lesser extent SUMOylation involvement in regulation of DDR and repair in health and disease. This book is intended for pre- and postgraduate students and young scientists in this field. Members of both academic and research institutions, actively involved in the field, have described their current understanding of major mechanisms involved, highlighted key events, described ongoing applications in both developmental diseases and cancer and provided hints for future potential applications.

Ubiquitination Governing DNA Repair

Ubiquitination Governing DNA Repair PDF Author: Effrossyni Boutou
Publisher: BoD – Books on Demand
ISBN: 1789235847
Category : Science
Languages : en
Pages : 221

Get Book Here

Book Description
DNA damage response (DDR) and lesion repair are vital processes ensuring genome integrity through various pathways depending mainly on the nature of DNA injury and cell cycle stage. DDR is finely regulated at many levels in co-ordination with other ongoing processes as is genome replication and cell cycle progression. Posttranslational modifications (PTMs), affecting both protein-protein and protein-DNA interactions, play a crucial role in finely tuning all processes involved in the restoration of genome lesions. Regarding damaged chromatin, PTMs serve in many cases as recruitment platforms for DNA repair mechanisms by facilitating binding sites or regulating interactions between involved proteins. Ubiquitination, the addition of ubiquitin moieties on a target protein, apart from controlling protein availability through degradation, is also involved, together with partner small ubiquitin-like modifier (SUMO), in controlling many pathways involved in DDR by modifying the structure-function relationship and thus interacting with partner molecules. The aim of this book is to cover a broad spectrum of current topics in ubiquitination and to a lesser extent SUMOylation involvement in regulation of DDR and repair in health and disease. This book is intended for pre- and postgraduate students and young scientists in this field. Members of both academic and research institutions, actively involved in the field, have described their current understanding of major mechanisms involved, highlighted key events, described ongoing applications in both developmental diseases and cancer and provided hints for future potential applications.

Ubiquitination Governing DNA Repair - Implications in Health and Disease

Ubiquitination Governing DNA Repair - Implications in Health and Disease PDF Author: Horst-Werner Stürzbecher
Publisher:
ISBN: 9781789235852
Category : Microbiology
Languages : en
Pages : 220

Get Book Here

Book Description
DNA damage response (DDR) and lesion repair are vital processes ensuring genome integrity through various pathways depending mainly on the nature of DNA injury and cell cycle stage. DDR is finely regulated at many levels in co-ordination with other ongoing processes as is genome replication and cell cycle progression. Posttranslational modifications (PTMs), affecting both protein-protein and protein-DNA interactions, play a crucial role in finely tuning all processes involved in the restoration of genome lesions. Regarding damaged chromatin, PTMs serve in many cases as recruitment platforms for DNA repair mechanisms by facilitating binding sites or regulating interactions between involved proteins. Ubiquitination, the addition of ubiquitin moieties on a target protein, apart from controlling protein availability through degradation, is also involved, together with partner small ubiquitin-like modifier (SUMO), in controlling many pathways involved in DDR by modifying the structure-function relationship and thus interacting with partner molecules. The aim of this book is to cover a broad spectrum of current topics in ubiquitination and to a lesser extent SUMOylation involvement in regulation of DDR and repair in health and disease. This book is intended for pre- and postgraduate students and young scientists in this field. Members of both academic and research institutions, actively involved in the field, have described their current understanding of major mechanisms involved, highlighted key events, described ongoing applications in both developmental diseases and cancer and provided hints for future potential applications.

Ubiquitin and Ubiquitin-Relative SUMO in DNA Damage Response

Ubiquitin and Ubiquitin-Relative SUMO in DNA Damage Response PDF Author: Kristijan Ramadan
Publisher: Frontiers Media SA
ISBN: 288945441X
Category :
Languages : en
Pages : 183

Get Book Here

Book Description
DNA damage response (DDR) is a term that includes a variety of highly sophisticated mechanisms that cells have evolved in safeguarding the genome from the deleterious consequences of DNA damage. It is estimated that every single cell receives tens of thousands of DNA lesions per day. Failure of DDR to properly respond to DNA damage leads to stem cell dysfunction, accelerated ageing, various degenerative diseases or cancer. The sole function of DDR is to recognize diverse DNA lesions, signal their presence, activate cell cycle arrest and finally recruit specific DNA repair proteins to fix the DNA damage and thus prevent genomic instability. DDR is composed of hundreds of spatiotemporally regulated and interconnected proteins, which are able to promptly respond to various DNA lesions. So it is not surprising that mutations in genes encoding various DDR proteins cause embryonic lethality, malignancies, neurodegenerative diseases and premature ageing. The importance of DDR for cell survival and genome stability is unquestionable, but how the sophisticated network of hundreds of different DDR proteins is spatiotemporally coordinated is far from being understood. In the last ten years ubiquitin (ubiquitination) and the ubiquitin-relative SUMO (sumoylation) have emerged as essential posttranslational modifications that regulate DDR. Beside a plethora of ubiqutin and sumo E1-activating enzymes, E2-conjugating enzymes, E3-ligases and ubiquitin/sumo proteases involved in ubiquitination and sumoylation, the complexity of ubiqutin and sumo systems is additionally increased by the fact that both ubiquitin and sumo can form a variety of different chains on substrates which govern the substrate fate, such as its interaction with other proteins, changing its enzymatic activity or promoting substrate degradation. The importance of ubiquitin/SUMO systems in the orchestration of DDR is best illustrated in patients with mutations in E3-ubiquitin ligases BRCA1 or RNF168. BRCA1 is essential for proper function of DDR and its mutations lead to triple-negative breast and ovarian cancers. RNF168 is an E3 ubiquitin ligase, which creates the ubiquitin docking platform for recruitment of different DNA damage signalling and repair proteins at sites of DNA lesion, and its mutations cause RIDDLE syndrome characterized by radiosensitivity, immunodeficiency and learning disability. In addition, recently discovered the ubiquitin receptor protein SPRTN is part of the DNA replication machinery and its mutations cause early-onset hepatocellular carcinoma and premature ageing in humans. Despite more than 700 different enzymes directly involved in ubiquitination and sumoylation processes only few of them are known to play a role in DDR. Therefore, we feel that the role of ubiquitin and the ubiquitin-related SUMO in DDR is far from being understood, and that this is the emerging field that will hugely expand in the next decade due to the rapid development of a new generation of technologies, which will allow us a more robust and precise analyses of human genome, transcriptome and proteome. In this Research Topic we provide a comprehensive overview of our current understanding of ubiquitin and SUMO pathways in all aspects of DDR, from DNA replication to different DNA repair pathways, and demonstrate how alterations in these pathways cause genomic instability that is linked to degenerative diseases, cancer and pathological ageing.

Ubiquitin and Ubiquitin-Relative SUMO in DNA Damage Response

Ubiquitin and Ubiquitin-Relative SUMO in DNA Damage Response PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
DNA damage response (DDR) is a term that includes a variety of highly sophisticated mechanisms that cells have evolved in safeguarding the genome from the deleterious consequences of DNA damage. It is estimated that every single cell receives tens of thousands of DNA lesions per day. Failure of DDR to properly respond to DNA damage leads to stem cell dysfunction, accelerated ageing, various degenerative diseases or cancer. The sole function of DDR is to recognize diverse DNA lesions, signal their presence, activate cell cycle arrest and finally recruit specific DNA repair proteins to fix the DNA damage and thus prevent genomic instability. DDR is composed of hundreds of spatiotemporally regulated and interconnected proteins, which are able to promptly respond to various DNA lesions. So it is not surprising that mutations in genes encoding various DDR proteins cause embryonic lethality, malignancies, neurodegenerative diseases and premature ageing. The importance of DDR for cell survival and genome stability is unquestionable, but how the sophisticated network of hundreds of different DDR proteins is spatiotemporally coordinated is far from being understood. In the last ten years ubiquitin (ubiquitination) and the ubiquitin-relative SUMO (sumoylation) have emerged as essential posttranslational modifications that regulate DDR. Beside a plethora of ubiqutin and sumo E1-activating enzymes, E2-conjugating enzymes, E3-ligases and ubiquitin/sumo proteases involved in ubiquitination and sumoylation, the complexity of ubiqutin and sumo systems is additionally increased by the fact that both ubiquitin and sumo can form a variety of different chains on substrates which govern the substrate fate, such as its interaction with other proteins, changing its enzymatic activity or promoting substrate degradation. The importance of ubiquitin/SUMO systems in the orchestration of DDR is best illustrated in patients with mutations in E3-ubiquitin ligases BRCA1 or RNF168. BRCA1 is essential for proper function of DDR and its mutations lead to triple-negative breast and ovarian cancers. RNF168 is an E3 ubiquitin ligase, which creates the ubiquitin docking platform for recruitment of different DNA damage signalling and repair proteins at sites of DNA lesion, and its mutations cause RIDDLE syndrome characterized by radiosensitivity, immunodeficiency and learning disability. In addition, recently discovered the ubiquitin receptor protein SPRTN is part of the DNA replication machinery and its mutations cause early-onset hepatocellular carcinoma and premature ageing in humans. Despite more than 700 different enzymes directly involved in ubiquitination and sumoylation processes only few of them are known to play a role in DDR. Therefore, we feel that the role of ubiquitin and the ubiquitin-related SUMO in DDR is far from being understood, and that this is the emerging field that will hugely expand in the next decade due to the rapid development of a new generation of technologies, which will allow us a more robust and precise analyses of human genome, transcriptome and proteome. In this Research Topic we provide a comprehensive overview of our current understanding of ubiquitin and SUMO pathways in all aspects of DDR, from DNA replication to different DNA repair pathways, and demonstrate how alterations in these pathways cause genomic instability that is linked to degenerative diseases, cancer and pathological ageing.

Fundamentals of Chromatin

Fundamentals of Chromatin PDF Author: Jerry L. Workman
Publisher: Springer Science & Business Media
ISBN: 1461486246
Category : Medical
Languages : en
Pages : 594

Get Book Here

Book Description
​​​​​​​​​​​​​While there has been an increasing number of books on various aspects of epigenetics, there has been a gap over the years in books that provide a comprehensive understanding of the fundamentals of chromatin. ​Chromatin is the combination of DNA and proteins that make up the genetic material of chromosomes. Its primary function is to package DNA to fit into the cell, to strengthen the DNA to prevent damage, to allow mitosis and meiosis, and to control the expression of genes and DNA replication. The audience for this book is mainly newly established scientists ​and graduate students. Rather than going into the more specific areas of recent research on chromatin the chapters in this book give a strong, updated groundwork about the topic. Some the fundamentals that this book will cover include the structure of chromatin and biochemistry and the enzyme complexes that manage it.

Systems Biology of Cancer

Systems Biology of Cancer PDF Author: Sam Thiagalingam
Publisher: Cambridge University Press
ISBN: 0521493390
Category : Mathematics
Languages : en
Pages : 597

Get Book Here

Book Description
An overview of the current systems biology-based knowledge and the experimental approaches for deciphering the biological basis of cancer.

Ubiquitin Proteasome System

Ubiquitin Proteasome System PDF Author: Matthew Summers
Publisher: BoD – Books on Demand
ISBN: 1838804900
Category : Science
Languages : en
Pages : 228

Get Book Here

Book Description
The human ubiquitin proteasome system (UPS) is comprised of nearly 1000 proteins. Although originally identified as a mechanism of protein destruction, the UPS has numerous additional functions and mediates central signaling events in myriad processes involved in both cellular and organismal health and homeostasis. Numerous pathways within the UPS are implicated in disease, ranging from cancer to neurodegenerative diseases such as Parkinson's. The goal of this book is to deliver a collection of synopses of current areas of UPS research that highlights the importance of understanding the biology of the UPS to identify disease-relevant pathways, and the need to elucidate the molecular machinations within the UPS to develop methods for therapeutic modulation of these pathways.

Molecular Biology of The Cell

Molecular Biology of The Cell PDF Author: Bruce Alberts
Publisher:
ISBN: 9780815332183
Category : Cytology
Languages : en
Pages : 0

Get Book Here

Book Description


The Ubiquitin System

The Ubiquitin System PDF Author: Milton J. Schlesinger
Publisher: Cold Spring Harbor Laboratory Press
ISBN:
Category : Science
Languages : en
Pages : 218

Get Book Here

Book Description


Ubiquitination - An Evolving Role in DNA Repair

Ubiquitination - An Evolving Role in DNA Repair PDF Author: Effrossyni Boutou
Publisher:
ISBN:
Category : Medicine
Languages : en
Pages :

Get Book Here

Book Description
Ubiquitination - An Evolving Role in DNA Repair.