Author: Richard Dedekind
Publisher:
ISBN:
Category : Algebraic fields
Languages : de
Pages : 332
Book Description
Über Die Theorie Der Ganzen Algebraischen Zahlen
Author: Richard Dedekind
Publisher:
ISBN:
Category : Algebraic fields
Languages : de
Pages : 332
Book Description
Publisher:
ISBN:
Category : Algebraic fields
Languages : de
Pages : 332
Book Description
Modern Algebra and the Rise of Mathematical Structures
Author: Leo Corry
Publisher: Birkhäuser
ISBN: 3034879172
Category : Mathematics
Languages : en
Pages : 463
Book Description
This book describes two stages in the historical development of the notion of mathematical structures: first, it traces its rise in the context of algebra from the mid-1800s to 1930, and then considers attempts to formulate elaborate theories after 1930 aimed at elucidating, from a purely mathematical perspective, the precise meaning of this idea.
Publisher: Birkhäuser
ISBN: 3034879172
Category : Mathematics
Languages : en
Pages : 463
Book Description
This book describes two stages in the historical development of the notion of mathematical structures: first, it traces its rise in the context of algebra from the mid-1800s to 1930, and then considers attempts to formulate elaborate theories after 1930 aimed at elucidating, from a purely mathematical perspective, the precise meaning of this idea.
Einführung in Die Elementare und Analytische Theorie Der Algebraischen Zahlen und Der Ideale
Author: Edmund Landau
Publisher:
ISBN:
Category : Algebraic fields
Languages : en
Pages : 170
Book Description
Publisher:
ISBN:
Category : Algebraic fields
Languages : en
Pages : 170
Book Description
Elementary and Analytic Theory of Algebraic Numbers
Author: Wladyslaw Narkiewicz
Publisher: Springer Science & Business Media
ISBN: 3662070014
Category : Mathematics
Languages : en
Pages : 712
Book Description
This book details the classical part of the theory of algebraic number theory, excluding class-field theory and its consequences. Coverage includes: ideal theory in rings of algebraic integers, p-adic fields and their finite extensions, ideles and adeles, zeta-functions, distribution of prime ideals, Abelian fields, the class-number of quadratic fields, and factorization problems. The book also features exercises and a list of open problems.
Publisher: Springer Science & Business Media
ISBN: 3662070014
Category : Mathematics
Languages : en
Pages : 712
Book Description
This book details the classical part of the theory of algebraic number theory, excluding class-field theory and its consequences. Coverage includes: ideal theory in rings of algebraic integers, p-adic fields and their finite extensions, ideles and adeles, zeta-functions, distribution of prime ideals, Abelian fields, the class-number of quadratic fields, and factorization problems. The book also features exercises and a list of open problems.
Vorlesungen Uber Zahlentheorie
Author: Peter Gustav Lejeune Dirichlet
Publisher: Cambridge University Press
ISBN: 1108050395
Category : Mathematics
Languages : en
Pages : 651
Book Description
The third edition (1879) of Dirichlet's posthumously published 1856-7 lectures on number theory includes several famous proofs.
Publisher: Cambridge University Press
ISBN: 1108050395
Category : Mathematics
Languages : en
Pages : 651
Book Description
The third edition (1879) of Dirichlet's posthumously published 1856-7 lectures on number theory includes several famous proofs.
The Story of Algebraic Numbers in the First Half of the 20th Century
Author: Władysław Narkiewicz
Publisher: Springer
ISBN: 3030037541
Category : Mathematics
Languages : en
Pages : 448
Book Description
The book is aimed at people working in number theory or at least interested in this part of mathematics. It presents the development of the theory of algebraic numbers up to the year 1950 and contains a rather complete bibliography of that period. The reader will get information about results obtained before 1950. It is hoped that this may be helpful in preventing rediscoveries of old results, and might also inspire the reader to look at the work done earlier, which may hide some ideas which could be applied in contemporary research.
Publisher: Springer
ISBN: 3030037541
Category : Mathematics
Languages : en
Pages : 448
Book Description
The book is aimed at people working in number theory or at least interested in this part of mathematics. It presents the development of the theory of algebraic numbers up to the year 1950 and contains a rather complete bibliography of that period. The reader will get information about results obtained before 1950. It is hoped that this may be helpful in preventing rediscoveries of old results, and might also inspire the reader to look at the work done earlier, which may hide some ideas which could be applied in contemporary research.
Mathematical Thought From Ancient to Modern Times, Volume 3
Author: Morris Kline
Publisher: Oxford University Press
ISBN: 0199770484
Category : Mathematics
Languages : en
Pages : 439
Book Description
This comprehensive history traces the development of mathematical ideas and the careers of the men responsible for them. Volume 1 looks at the disciplines origins in Babylon and Egypt, the creation of geometry and trigonometry by the Greeks, and the role of mathematics in the medieval and early modern periods. Volume 2 focuses on calculus, the rise of analysis in the 19th century, and the number theories of Dedekind and Dirichlet. The concluding volume covers the revival of projective geometry, the emergence of abstract algebra, the beginnings of topology, and the influence of Godel on recent mathematical study.
Publisher: Oxford University Press
ISBN: 0199770484
Category : Mathematics
Languages : en
Pages : 439
Book Description
This comprehensive history traces the development of mathematical ideas and the careers of the men responsible for them. Volume 1 looks at the disciplines origins in Babylon and Egypt, the creation of geometry and trigonometry by the Greeks, and the role of mathematics in the medieval and early modern periods. Volume 2 focuses on calculus, the rise of analysis in the 19th century, and the number theories of Dedekind and Dirichlet. The concluding volume covers the revival of projective geometry, the emergence of abstract algebra, the beginnings of topology, and the influence of Godel on recent mathematical study.
Basic Algebra
Author: P.M. Cohn
Publisher: Springer Science & Business Media
ISBN: 0857294288
Category : Mathematics
Languages : en
Pages : 470
Book Description
This is the first volume of a revised edition of P.M. Cohn's classic three-volume text Algebra, widely regarded as one of the most outstanding introductory algebra textbooks. This volume covers the important results of algebra. Readers should have some knowledge of linear algebra, groups and fields, although all the essential facts and definitions are recalled.
Publisher: Springer Science & Business Media
ISBN: 0857294288
Category : Mathematics
Languages : en
Pages : 470
Book Description
This is the first volume of a revised edition of P.M. Cohn's classic three-volume text Algebra, widely regarded as one of the most outstanding introductory algebra textbooks. This volume covers the important results of algebra. Readers should have some knowledge of linear algebra, groups and fields, although all the essential facts and definitions are recalled.
Monatshefte für Mathematik und Physik
Author:
Publisher:
ISBN:
Category : Mathematics
Languages : de
Pages : 460
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : de
Pages : 460
Book Description
Number Theory
Author: Helmut Koch
Publisher: American Mathematical Soc.
ISBN: 9780821820544
Category : Mathematics
Languages : en
Pages : 390
Book Description
Algebraic number theory is one of the most refined creations in mathematics. It has been developed by some of the leading mathematicians of this and previous centuries. The primary goal of this book is to present the essential elements of algebraic number theory, including the theory of normal extensions up through a glimpse of class field theory. Following the example set for us by Kronecker, Weber, Hilbert and Artin, algebraic functions are handled here on an equal footing with algebraic numbers. This is done on the one hand to demonstrate the analogy between number fields and function fields, which is especially clear in the case where the ground field is a finite field. On the other hand, in this way one obtains an introduction to the theory of 'higher congruences' as an important element of 'arithmetic geometry'. Early chapters discuss topics in elementary number theory, such as Minkowski's geometry of numbers, public-key cryptography and a short proof of the Prime Number Theorem, following Newman and Zagier. Next, some of the tools of algebraic number theory are introduced, such as ideals, discriminants and valuations. These results are then applied to obtain results about function fields, including a proof of the Riemann-Roch Theorem and, as an application of cyclotomic fields, a proof of the first case of Fermat's Last Theorem. There are a detailed exposition of the theory of Hecke $L$-series, following Tate, and explicit applications to number theory, such as the Generalized Riemann Hypothesis. Chapter 9 brings together the earlier material through the study of quadratic number fields. Finally, Chapter 10 gives an introduction to class field theory. The book attempts as much as possible to give simple proofs. It can be used by a beginner in algebraic number theory who wishes to see some of the true power and depth of the subject. The book is suitable for two one-semester courses, with the first four chapters serving to develop the basic material. Chapters 6 through 9 could be used on their own as a second semester course.
Publisher: American Mathematical Soc.
ISBN: 9780821820544
Category : Mathematics
Languages : en
Pages : 390
Book Description
Algebraic number theory is one of the most refined creations in mathematics. It has been developed by some of the leading mathematicians of this and previous centuries. The primary goal of this book is to present the essential elements of algebraic number theory, including the theory of normal extensions up through a glimpse of class field theory. Following the example set for us by Kronecker, Weber, Hilbert and Artin, algebraic functions are handled here on an equal footing with algebraic numbers. This is done on the one hand to demonstrate the analogy between number fields and function fields, which is especially clear in the case where the ground field is a finite field. On the other hand, in this way one obtains an introduction to the theory of 'higher congruences' as an important element of 'arithmetic geometry'. Early chapters discuss topics in elementary number theory, such as Minkowski's geometry of numbers, public-key cryptography and a short proof of the Prime Number Theorem, following Newman and Zagier. Next, some of the tools of algebraic number theory are introduced, such as ideals, discriminants and valuations. These results are then applied to obtain results about function fields, including a proof of the Riemann-Roch Theorem and, as an application of cyclotomic fields, a proof of the first case of Fermat's Last Theorem. There are a detailed exposition of the theory of Hecke $L$-series, following Tate, and explicit applications to number theory, such as the Generalized Riemann Hypothesis. Chapter 9 brings together the earlier material through the study of quadratic number fields. Finally, Chapter 10 gives an introduction to class field theory. The book attempts as much as possible to give simple proofs. It can be used by a beginner in algebraic number theory who wishes to see some of the true power and depth of the subject. The book is suitable for two one-semester courses, with the first four chapters serving to develop the basic material. Chapters 6 through 9 could be used on their own as a second semester course.