Two-metric Projection Methods for Constrained Optimization

Two-metric Projection Methods for Constrained Optimization PDF Author: Eli Gafni
Publisher:
ISBN:
Category : Mathematical optimization
Languages : en
Pages : 59

Get Book Here

Book Description

Two-metric Projection Methods for Constrained Optimization

Two-metric Projection Methods for Constrained Optimization PDF Author: Eli Gafni
Publisher:
ISBN:
Category : Mathematical optimization
Languages : en
Pages : 59

Get Book Here

Book Description


Projection Methods in Constrained Optimisation and Applications to Optimal Policy Decisions

Projection Methods in Constrained Optimisation and Applications to Optimal Policy Decisions PDF Author: Berc Rustem
Publisher: Springer
ISBN:
Category : Mathematical optimization
Languages : en
Pages : 340

Get Book Here

Book Description


Mathematical Programming with Data Perturbations

Mathematical Programming with Data Perturbations PDF Author: Anthony V. Fiacco
Publisher: CRC Press
ISBN: 1000117111
Category : Mathematics
Languages : en
Pages : 456

Get Book Here

Book Description
Presents research contributions and tutorial expositions on current methodologies for sensitivity, stability and approximation analyses of mathematical programming and related problem structures involving parameters. The text features up-to-date findings on important topics, covering such areas as the effect of perturbations on the performance of algorithms, approximation techniques for optimal control problems, and global error bounds for convex inequalities.

GRADIENT PROJECTION METHOD FOR CONSTRAINED OPTIMIZATION.

GRADIENT PROJECTION METHOD FOR CONSTRAINED OPTIMIZATION. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Nonlinear Programming and Variational Inequality Problems

Nonlinear Programming and Variational Inequality Problems PDF Author: Michael Patriksson
Publisher: Springer Science & Business Media
ISBN: 147572991X
Category : Mathematics
Languages : en
Pages : 343

Get Book Here

Book Description
Since I started working in the area of nonlinear programming and, later on, variational inequality problems, I have frequently been surprised to find that many algorithms, however scattered in numerous journals, monographs and books, and described rather differently, are closely related to each other. This book is meant to help the reader understand and relate algorithms to each other in some intuitive fashion, and represents, in this respect, a consolidation of the field. The framework of algorithms presented in this book is called Cost Approxi mation. (The preface of the Ph.D. thesis [Pat93d] explains the background to the work that lead to the thesis, and ultimately to this book.) It describes, for a given formulation of a variational inequality or nonlinear programming problem, an algorithm by means of approximating mappings and problems, a principle for the update of the iteration points, and a merit function which guides and monitors the convergence of the algorithm. One purpose of this book is to offer this framework as an intuitively appeal ing tool for describing an algorithm. One of the advantages of the framework, or any reasonable framework for that matter, is that two algorithms may be easily related and compared through its use. This framework is particular in that it covers a vast number of methods, while still being fairly detailed; the level of abstraction is in fact the same as that of the original problem statement.

Alternating Projection Methods

Alternating Projection Methods PDF Author: RenŸ Escalante
Publisher: SIAM
ISBN: 1611971934
Category : Mathematics
Languages : en
Pages : 133

Get Book Here

Book Description
A comprehensive textbook for advanced undergraduate or graduate students.

Large Scale Optimization

Large Scale Optimization PDF Author: William W. Hager
Publisher: Springer Science & Business Media
ISBN: 1461336325
Category : Mathematics
Languages : en
Pages : 470

Get Book Here

Book Description
On February 15-17, 1993, a conference on Large Scale Optimization, hosted by the Center for Applied Optimization, was held at the University of Florida. The con ference was supported by the National Science Foundation, the U. S. Army Research Office, and the University of Florida, with endorsements from SIAM, MPS, ORSA and IMACS. Forty one invited speakers presented papers on mathematical program ming and optimal control topics with an emphasis on algorithm development, real world applications and numerical results. Participants from Canada, Japan, Sweden, The Netherlands, Germany, Belgium, Greece, and Denmark gave the meeting an important international component. At tendees also included representatives from IBM, American Airlines, US Air, United Parcel Serice, AT & T Bell Labs, Thinking Machines, Army High Performance Com puting Research Center, and Argonne National Laboratory. In addition, the NSF sponsored attendance of thirteen graduate students from universities in the United States and abroad. Accurate modeling of scientific problems often leads to the formulation of large scale optimization problems involving thousands of continuous and/or discrete vari ables. Large scale optimization has seen a dramatic increase in activities in the past decade. This has been a natural consequence of new algorithmic developments and of the increased power of computers. For example, decomposition ideas proposed by G. Dantzig and P. Wolfe in the 1960's, are now implement able in distributed process ing systems, and today many optimization codes have been implemented on parallel machines.

Nonlinear Programming

Nonlinear Programming PDF Author: Dimitri Bertsekas
Publisher: Athena Scientific
ISBN: 1886529051
Category : Mathematics
Languages : en
Pages : 1100

Get Book Here

Book Description
This book provides a comprehensive and accessible presentation of algorithms for solving continuous optimization problems. It relies on rigorous mathematical analysis, but also aims at an intuitive exposition that makes use of visualization where possible. It places particular emphasis on modern developments, and their widespread applications in fields such as large-scale resource allocation problems, signal processing, and machine learning. The 3rd edition brings the book in closer harmony with the companion works Convex Optimization Theory (Athena Scientific, 2009), Convex Optimization Algorithms (Athena Scientific, 2015), Convex Analysis and Optimization (Athena Scientific, 2003), and Network Optimization (Athena Scientific, 1998). These works are complementary in that they deal primarily with convex, possibly nondifferentiable, optimization problems and rely on convex analysis. By contrast the nonlinear programming book focuses primarily on analytical and computational methods for possibly nonconvex differentiable problems. It relies primarily on calculus and variational analysis, yet it still contains a detailed presentation of duality theory and its uses for both convex and nonconvex problems. This on-line edition contains detailed solutions to all the theoretical book exercises. Among its special features, the book: Provides extensive coverage of iterative optimization methods within a unifying framework Covers in depth duality theory from both a variational and a geometric point of view Provides a detailed treatment of interior point methods for linear programming Includes much new material on a number of topics, such as proximal algorithms, alternating direction methods of multipliers, and conic programming Focuses on large-scale optimization topics of much current interest, such as first order methods, incremental methods, and distributed asynchronous computation, and their applications in machine learning, signal processing, neural network training, and big data applications Includes a large number of examples and exercises Was developed through extensive classroom use in first-year graduate courses

Convex Optimization Algorithms

Convex Optimization Algorithms PDF Author: Dimitri Bertsekas
Publisher: Athena Scientific
ISBN: 1886529280
Category : Mathematics
Languages : en
Pages : 576

Get Book Here

Book Description
This book provides a comprehensive and accessible presentation of algorithms for solving convex optimization problems. It relies on rigorous mathematical analysis, but also aims at an intuitive exposition that makes use of visualization where possible. This is facilitated by the extensive use of analytical and algorithmic concepts of duality, which by nature lend themselves to geometrical interpretation. The book places particular emphasis on modern developments, and their widespread applications in fields such as large-scale resource allocation problems, signal processing, and machine learning. The book is aimed at students, researchers, and practitioners, roughly at the first year graduate level. It is similar in style to the author's 2009"Convex Optimization Theory" book, but can be read independently. The latter book focuses on convexity theory and optimization duality, while the present book focuses on algorithmic issues. The two books share notation, and together cover the entire finite-dimensional convex optimization methodology. To facilitate readability, the statements of definitions and results of the "theory book" are reproduced without proofs in Appendix B.

Optimization for Machine Learning

Optimization for Machine Learning PDF Author: Suvrit Sra
Publisher: MIT Press
ISBN: 026201646X
Category : Computers
Languages : en
Pages : 509

Get Book Here

Book Description
An up-to-date account of the interplay between optimization and machine learning, accessible to students and researchers in both communities. The interplay between optimization and machine learning is one of the most important developments in modern computational science. Optimization formulations and methods are proving to be vital in designing algorithms to extract essential knowledge from huge volumes of data. Machine learning, however, is not simply a consumer of optimization technology but a rapidly evolving field that is itself generating new optimization ideas. This book captures the state of the art of the interaction between optimization and machine learning in a way that is accessible to researchers in both fields. Optimization approaches have enjoyed prominence in machine learning because of their wide applicability and attractive theoretical properties. The increasing complexity, size, and variety of today's machine learning models call for the reassessment of existing assumptions. This book starts the process of reassessment. It describes the resurgence in novel contexts of established frameworks such as first-order methods, stochastic approximations, convex relaxations, interior-point methods, and proximal methods. It also devotes attention to newer themes such as regularized optimization, robust optimization, gradient and subgradient methods, splitting techniques, and second-order methods. Many of these techniques draw inspiration from other fields, including operations research, theoretical computer science, and subfields of optimization. The book will enrich the ongoing cross-fertilization between the machine learning community and these other fields, and within the broader optimization community.