Half-discrete Hilbert-type Inequalities

Half-discrete Hilbert-type Inequalities PDF Author: Bicheng Yang
Publisher: World Scientific
ISBN: 9814504998
Category : Mathematics
Languages : en
Pages : 348

Get Book Here

Book Description
In 1934, G. H. Hardy et al. published a book entitled “Inequalities”, in which a few theorems about Hilbert-type inequalities with homogeneous kernels of degree-one were considered. Since then, the theory of Hilbert-type discrete and integral inequalities is almost built by Prof. Bicheng Yang in their four published books.This monograph deals with half-discrete Hilbert-type inequalities. By means of building the theory of discrete and integral Hilbert-type inequalities, and applying the technique of Real Analysis and Summation Theory, some kinds of half-discrete Hilbert-type inequalities with the general homogeneous kernels and non-homogeneous kernels are built. The relating best possible constant factors are all obtained and proved. The equivalent forms, operator expressions and some kinds of reverses with the best constant factors are given. We also consider some multi-dimensional extensions and two kinds of multiple inequalities with parameters and variables, which are some extensions of the two-dimensional cases. As applications, a large number of examples with particular kernels are also discussed.The authors have been successful in applying Hilbert-type discrete and integral inequalities to the topic of half-discrete inequalities. The lemmas and theorems in this book provide an extensive account of these kinds of inequalities and operators. This book can help many readers make good progress in research on Hilbert-type inequalities and their applications.

Half-discrete Hilbert-type Inequalities

Half-discrete Hilbert-type Inequalities PDF Author: Bicheng Yang
Publisher: World Scientific
ISBN: 9814504998
Category : Mathematics
Languages : en
Pages : 348

Get Book Here

Book Description
In 1934, G. H. Hardy et al. published a book entitled “Inequalities”, in which a few theorems about Hilbert-type inequalities with homogeneous kernels of degree-one were considered. Since then, the theory of Hilbert-type discrete and integral inequalities is almost built by Prof. Bicheng Yang in their four published books.This monograph deals with half-discrete Hilbert-type inequalities. By means of building the theory of discrete and integral Hilbert-type inequalities, and applying the technique of Real Analysis and Summation Theory, some kinds of half-discrete Hilbert-type inequalities with the general homogeneous kernels and non-homogeneous kernels are built. The relating best possible constant factors are all obtained and proved. The equivalent forms, operator expressions and some kinds of reverses with the best constant factors are given. We also consider some multi-dimensional extensions and two kinds of multiple inequalities with parameters and variables, which are some extensions of the two-dimensional cases. As applications, a large number of examples with particular kernels are also discussed.The authors have been successful in applying Hilbert-type discrete and integral inequalities to the topic of half-discrete inequalities. The lemmas and theorems in this book provide an extensive account of these kinds of inequalities and operators. This book can help many readers make good progress in research on Hilbert-type inequalities and their applications.

A Kind of Half-Discrete Hardy-Hilbert-Type Inequalities Involving Several Applications

A Kind of Half-Discrete Hardy-Hilbert-Type Inequalities Involving Several Applications PDF Author: CV-Bicheng Yang
Publisher: Scientific Research Publishing, Inc. USA
ISBN: 1649977778
Category : Antiques & Collectibles
Languages : en
Pages : 189

Get Book Here

Book Description
In this book, applying the weight functions, the idea of introduced parameters and the techniques of real analysis and functional analysis, we provide a new kind of half-discrete Hilbert-type inequalities named in Mulholland-type inequality. Then, we consider its several applications involving the derivative function of higher-order or the multiple upper limit function. Some new reverses with the partial sums are obtained. We also consider some half-discrete Hardy-Hilbert’s inequalities with two internal variables involving one derivative function or one upper limit function in the last chapter. The lemmas and theorems provide an extensive account of these kinds of half-discrete inequalities and operators.

On Hilbert-Type and Hardy-Type Integral Inequalities and Applications

On Hilbert-Type and Hardy-Type Integral Inequalities and Applications PDF Author: Bicheng Yang
Publisher: Springer Nature
ISBN: 3030292681
Category : Mathematics
Languages : en
Pages : 152

Get Book Here

Book Description
This book is aimed toward graduate students and researchers in mathematics, physics and engineering interested in the latest developments in analytic inequalities, Hilbert-Type and Hardy-Type integral inequalities, and their applications. Theories, methods, and techniques of real analysis and functional analysis are applied to equivalent formulations of Hilbert-type inequalities, Hardy-type integral inequalities as well as their parameterized reverses. Special cases of these integral inequalities across an entire plane are considered and explained. Operator expressions with the norm and some particular analytic inequalities are detailed through several lemmas and theorems to provide an extensive account of inequalities and operators.

Parameterized Multidimensional Hilbert-Type Inequalities

Parameterized Multidimensional Hilbert-Type Inequalities PDF Author: Bicheng Yang
Publisher: Scientific Research Publishing, Inc. USA
ISBN: 1618968262
Category : Antiques & Collectibles
Languages : en
Pages : 273

Get Book Here

Book Description
In 1934, G. H. Hardy et al. published a famous book entitled “Inequalities”, in which a theory about Hardy-Hilbert-type inequalities with the general homogeneous kernels of degree-1 and the best possible constant factors was built by introducing one pair of conjugate exponents. In January 2009, for generalized theory of Hardy-Hilbert-type inequalities, a book entitled “The Norm of Operator and Hilbert-Type Inequalities” (by Bicheng Yang) was published by Science Press of China, which considered the theory of Hilbert-type inequalities and operators with the homogeneous kernels of degree negative numbers and the best possible constant factors, by introducing two pairs of conjugate exponents and a few independent parameters. In October 2009 and January 2011, two books entitled “Hilbert-Type Integral Inequalities” and “Discrete Hilbert-Type Inequalities” (by Bicheng Yang) were published by Bentham Science Publishers Ltd., which considered mainly Hilbert-type integral and discrete inequalities with the homogeneous kernels of degree real numbers and applications. In 2012, a book entitled “Nonlinear Analysis: Stability, Approximation, and Inequality” was published by Springer, which contained Chapter 42 entitled “Hilbert-Type Operator: Norms and Inequalities” (by Bicheng Yang). In this chapter, the author defined a general Yang-Hilbert-type integral operator and studied six particular kinds of this operator with different measurable kernels in several normed spaces. In 2014, a book entitled “Half-Discrete Hilbert-Type Inequalities” was published in World Scientific Publishing Co. Pte. Ltd. (in Singapore), in which, the authors Bicheng Yang and L. Debnath considered some kinds of half-discrete Yang-Hilbert-type inequalities and their applications. In a word, the theory of Hilbert-type integral, discrete and half- discrete inequalities is almost built by Bicheng Yang et al. in the above stated books.

Handbook of Functional Equations

Handbook of Functional Equations PDF Author: Themistocles M. Rassias
Publisher: Springer
ISBN: 1493912461
Category : Mathematics
Languages : en
Pages : 555

Get Book Here

Book Description
As Richard Bellman has so elegantly stated at the Second International Conference on General Inequalities (Oberwolfach, 1978), “There are three reasons for the study of inequalities: practical, theoretical, and aesthetic.” On the aesthetic aspects, he said, “As has been pointed out, beauty is in the eye of the beholder. However, it is generally agreed that certain pieces of music, art, or mathematics are beautiful. There is an elegance to inequalities that makes them very attractive.” The content of the Handbook focuses mainly on both old and recent developments on approximate homomorphisms, on a relation between the Hardy–Hilbert and the Gabriel inequality, generalized Hardy–Hilbert type inequalities on multiple weighted Orlicz spaces, half-discrete Hilbert-type inequalities, on affine mappings, on contractive operators, on multiplicative Ostrowski and trapezoid inequalities, Ostrowski type inequalities for the Riemann–Stieltjes integral, means and related functional inequalities, Weighted Gini means, controlled additive relations, Szasz–Mirakyan operators, extremal problems in polynomials and entire functions, applications of functional equations to Dirichlet problem for doubly connected domains, nonlinear elliptic problems depending on parameters, on strongly convex functions, as well as applications to some new algorithms for solving general equilibrium problems, inequalities for the Fisher’s information measures, financial networks, mathematical models of mechanical fields in media with inclusions and holes.

HILBERT-TYPE AND HARDY-TYPE INTEGRAL INEQUALITIES IN THE WHOLE PLANE

HILBERT-TYPE AND HARDY-TYPE INTEGRAL INEQUALITIES IN THE WHOLE PLANE PDF Author: Bicheng Yang
Publisher: Scientific Research Publishing, Inc. USA
ISBN: 1649974094
Category : Antiques & Collectibles
Languages : en
Pages : 162

Get Book Here

Book Description
Hilbert-type inequalities including Hilbert’s inequalities (built-in 1908), Hardy-Hilbert-type inequalities (built-in 1934), and Yang-Hilbert-type inequalities (built-in 1998) played an important role in analysis and their applications, which are mainly divided into three classes of integral, discrete and half-discrete. In recent twenty years, there are many advances in research on Hilbert-type inequalities, especially in Yang-Hilbert-type inequalities. In this book, applying the weight functions, the parameterized idea, and the techniques of real analysis and functional analysis, we provide three kinds of Hilbert-type and Hardy-type integral inequalities in the whole plane as well as their reverses with parameters, which are extensions of Hilbert-type and Hardy-type integral inequalities in the first quarter. The equivalent forms, the operator expressions, and some equivalent statements of the best possible constant factors related to several parameters are considered. The lemmas and theorems provide an extensive account of these kinds of integral inequalities and operators. There are seven chapters in this book. In Chapter 1, we introduce some recent developments of Hilbert-type integral, discrete, and half-discrete inequalities. In Chapters 2-3, by using the weight function and real analysis, some new Hilbert-type and Hardy-type integral inequalities in the whole plane with the non-homogeneous kernel are given, and the cases of the homogeneous kernel are deduced. The equivalent forms and some equivalent statements of the best possible constant factors related to several parameters are obtained. We also consider the operator expressions as well as the reverses. In Chapters 4-7, the other two kinds of Hilbert-type and Hardy-type integral inequalities in the whole plane are also considered. We hope that this monograph will prove to be useful especially to graduate students of mathematics, physics, and engineering sciences.

Hilbert-Type Inequalities: Operators, Compositions and Extensions

Hilbert-Type Inequalities: Operators, Compositions and Extensions PDF Author: Bicheng Yang
Publisher: Scientific Research Publishing, Inc. USA
ISBN: 1618969498
Category : Antiques & Collectibles
Languages : en
Pages : 410

Get Book Here

Book Description
Hilbert-type inequalities include Hilbert's inequalities, Hardy-Hilbert-type inequalities and Yang-Hilbert-type inequalities, which are important in Analysis and its applications.They are mainly divided three kinds of integral, discrete and half-discrete.In recent twenty years, there are many advances in research on Hilbert-type inequalities,especially in Yang-Hilbert-type inequalities. In this book, by using the way of weight functions, the parameterized idea and technique of Real and Functional Analysis, we introduce multi-parameters and provide three kinds of double Hilbert-type inequalities with the general measurable kernels and the best possible constant factors. The equivalent forms, the reverses and some particular inequalities are obtained. Furthermore, the operator expressions with the norm, a large number of examples on the norm, some composition formulas of the operators, and three kinds of compositional inequalities with the best possible constant factors are considered. The theory of double Hilbert-type inequalities and operators are almost built. The lemmas and theorems provide an extensive account of these kinds of inequalities and operators.

Differential and Integral Inequalities

Differential and Integral Inequalities PDF Author: Dorin Andrica
Publisher: Springer Nature
ISBN: 3030274071
Category : Mathematics
Languages : en
Pages : 848

Get Book Here

Book Description
Theories, methods and problems in approximation theory and analytic inequalities with a focus on differential and integral inequalities are analyzed in this book. Fundamental and recent developments are presented on the inequalities of Abel, Agarwal, Beckenbach, Bessel, Cauchy–Hadamard, Chebychev, Markov, Euler’s constant, Grothendieck, Hilbert, Hardy, Carleman, Landau–Kolmogorov, Carlson, Bernstein–Mordell, Gronwall, Wirtinger, as well as inequalities of functions with their integrals and derivatives. Each inequality is discussed with proven results, examples and various applications. Graduate students and advanced research scientists in mathematical analysis will find this reference essential to their understanding of differential and integral inequalities. Engineers, economists, and physicists will find the highly applicable inequalities practical and useful to their research.

Inequalities

Inequalities PDF Author: Shigeru Furuichi
Publisher: MDPI
ISBN: 3039280627
Category : Mathematics
Languages : en
Pages : 204

Get Book Here

Book Description
Inequalities appear in various fields of natural science and engineering. Classical inequalities are still being improved and/or generalized by many researchers. That is, inequalities have been actively studied by mathematicians. In this book, we selected the papers that were published as the Special Issue ‘’Inequalities’’ in the journal Mathematics (MDPI publisher). They were ordered by similar topics for readers’ convenience and to give new and interesting results in mathematical inequalities, such as the improvements in famous inequalities, the results of Frame theory, the coefficient inequalities of functions, and the kind of convex functions used for Hermite–Hadamard inequalities. The editor believes that the contents of this book will be useful to study the latest results for researchers of this field.

Progress in Approximation Theory and Applicable Complex Analysis

Progress in Approximation Theory and Applicable Complex Analysis PDF Author: Narendra Kumar Govil
Publisher: Springer
ISBN: 331949242X
Category : Mathematics
Languages : en
Pages : 541

Get Book Here

Book Description
Current and historical research methods in approximation theory are presented in this book beginning with the 1800s and following the evolution of approximation theory via the refinement and extension of classical methods and ending with recent techniques and methodologies. Graduate students, postdocs, and researchers in mathematics, specifically those working in the theory of functions, approximation theory, geometric function theory, and optimization will find new insights as well as a guide to advanced topics. The chapters in this book are grouped into four themes; the first, polynomials (Chapters 1 –8), includes inequalities for polynomials and rational functions, orthogonal polynomials, and location of zeros. The second, inequalities and extremal problems are discussed in Chapters 9 –13. The third, approximation of functions, involves the approximants being polynomials, rational functions, and other types of functions and are covered in Chapters 14 –19. The last theme, quadrature, cubature and applications, comprises the final three chapters and includes an article coauthored by Rahman. This volume serves as a memorial volume to commemorate the distinguished career of Qazi Ibadur Rahman (1934–2013) of the Université de Montréal. Rahman was considered by his peers as one of the prominent experts in analytic theory of polynomials and entire functions. The novelty of his work lies in his profound abilities and skills in applying techniques from other areas of mathematics, such as optimization theory and variational principles, to obtain final answers to countless open problems.