Two Books In One: LEARN FROM SCRATCH VISUAL BASIC .NET WITH MYSQL

Two Books In One: LEARN FROM SCRATCH VISUAL BASIC .NET WITH MYSQL PDF Author: Vivian Siahaan
Publisher: BALIGE PUBLISHING
ISBN:
Category : Computers
Languages : en
Pages : 603

Get Book Here

Book Description
BOOK 1: VISUAL BASIC .NET AND DATABASE: PRACTICAL TUTORIALS This book aims to develop a MySQL-driven desktop application that readers can develop for their own purposes to implement library project using Visual Basic .NET. In Tutorial 1, you will build a Visual Basic interface for the database. This interface will used as the main terminal in accessing other forms. This tutorial will also discuss how to create login form and login table. You will create login form. Place on the form one picture box, two labels, one combo box, one text box, and two buttons. In Tutorial 2, you will build a school inventory project where you can store information about valuables in school. The table will have nine fields: Item (description of the item), Quantity, Location (where the item was placed), Shop (where the item was purchased), DatePurchased (when the item was purchased), Cost (how much the item cost), SerialNumber (serial number of the item), PhotoFile (path of the photo file of the item), and Fragile (indicates whether a particular item is fragile or not). In Tutorial 3, you will perform the steps necessary to add 5 new tables using phpMyAdmin into Academy database. You will build each table and add the associated fields as needed. Every table in the database will need input form. In this tutorial, you will build such a form for Author table. Although this table is quite simple (only four fields: AuthorID, Name, BirthDate, and PhotoFile), it provides a basis for illustrating the many steps in interface design. SQL statement is required by the Command object to read fields (sorted by Name). Then, you will build an interface so that the user can maintain the Publisher table in the database (Academy). The Publisher table interface is more or less the same as Author table interface. This Publisher table interface only requires more input fields. So you will use the interface for the Author table and modify it for the Publisher table. In Tutorial 4, you will perform the steps necessary to design and implement title form, library member form, and book borrowal form. You start by designing and testing the basic entry form for book titles. The Title table has nine fields: BookTitle, PublishYear, ISBN, PublisherID, AuthorID, Description, Note, Subject, and Comment. Then, you will build such a form for Member table. This table has twelve fields: MemberID, FirstName, LastName, BirthDate, Status, Ethnicity, Nationality, Mobile, Phone, Religion, Gender, and PhotoFile). You need thirteen label controls, one picture box, six text boxes, four comboxes, one check box, one date time picker, one openfiledialog, and one printpreviewdialog. You also need four buttons for navigation, six buttons for controlling editing features, one button for searching member’s name, and one button to upload member’s photo. Finally, you will build such a form for Borrow table. This table has seven fields: BorrowID, MemberID, BorrowCode, ISBN, BorrowDate, ReturnDate, and Penalty. In this form, you need fourteen label controls, seven text boxes, two comboxes, two date time pickers, and one printpreviewdialog. You also need four buttons for navigation, seven buttons for other utilities, one button to generate borrowal code, and one button to return book. BOOK 2: LEARN FROM SCRATCH VISUAL BASIC .NET WITH MYSQL This book will teach you with step-by-step approach to develop from scratch a MySQL-driven desktop application that readers can develop for their own purposes to implement school database project using Visual Basic .NET. In Tutorial 1, you will perform the steps necessary to add 8 tables using phpMyAdmin into School database that you will create. You will build each table and add the associated fields as needed. In this tutorial, you will also build login form and main form. In Tutorial 2, you will build such a form for Parent table. This table has thirteen fields: ParentID, FirstName, LastName, BirthDate, Status, Ethnicity, Nationality, Mobile, Phone, Religion, Gender, PhotoFile, and FingerFile). You need fourteen label controls, two picture boxes, six text boxes, four comboxes, one check box, one date time picker, one openfiledialog, and one printpreviewdialog. You also need four buttons for navigation, six buttons for other utilities, one button for searching member’s name, one button to upload parent’s photo, and button to upload parent’s finger. Place these controls on the form. In Tutorial 3, you will build such a form for Student table. This table has fifteen fields: StudentID, ParentID, FirstName, LastName, BirthDate, YearEntry, Status, Ethnicity, Nationality, Mobile, Phone, Religion, Gender, PhotoFile, and FingerFile). You need sixteen label controls, two picture boxes, six text boxes, five comboxes, one check box, two date time pickers, one openfiledialog, and one printpreviewdialog. You also need four buttons for navigation, seven buttons for controlling editing features, one button for searching parent’s name, one button to open parent form, one button to upload student’s photo, and one button to upload student’s finger. In Tutorial 4, you will build a form for Teacher table. This table has fifteen fields: TeacherID, RegNumber, FirstName, LastName, BirthDate, Rank, Status, Ethnicity, Nationality, Mobile, Phone, Religion, Gender, PhotoFile, and FingerFile). You need an input form so that user can edit existing records, delete records, or add new records. The form will also have the capability of navigating from one record to another. You need sixteen label controls, one picture box, seven text boxes, five comboxes, one check box, one date time picker, one openfiledialog, and one printpreviewdialog. You also need four buttons for navigation, six buttons for controlling editing features, one button for searching teacher’s name, and one button to upload teacher’s photo. In Tutorial 5, you will build a form for Subject table. This table has only three fields: SubjectID, Name, and Description. You need four label controls, four text boxes, one openfiledialog, and one printpreviewdialog. You also need four buttons for navigation, secen buttons for utilities, and one button for searching subject name. Place these controls on the form. You will also build a form for Grade table. This table has seven fields: GradeID, Name, SubjectID, TeacherID, SchoolYear, TimaStart, and TimeFinish. You need to add seven label controls, one text box, four comboxes, and two date time pickers. You also need four buttons for navigation, seven buttons for controlling editing features, one button to open subject form, and one button to open teacher form. In Tutorial 6, you will build a form for Grade_Student table. This table has only three fields: Grade_StudentID, GradeID, and StudentID. You need an input form so that user can edit existing records, delete records, or add new records. The form will also have the capability of navigating from one record to another. You need two label controls and two comboxes. You also need four buttons for navigation, seven buttons for controlling editing features, one button to open grade form, and one button to open student form.

Two Books In One: LEARN FROM SCRATCH VISUAL BASIC .NET WITH MYSQL

Two Books In One: LEARN FROM SCRATCH VISUAL BASIC .NET WITH MYSQL PDF Author: Vivian Siahaan
Publisher: BALIGE PUBLISHING
ISBN:
Category : Computers
Languages : en
Pages : 603

Get Book Here

Book Description
BOOK 1: VISUAL BASIC .NET AND DATABASE: PRACTICAL TUTORIALS This book aims to develop a MySQL-driven desktop application that readers can develop for their own purposes to implement library project using Visual Basic .NET. In Tutorial 1, you will build a Visual Basic interface for the database. This interface will used as the main terminal in accessing other forms. This tutorial will also discuss how to create login form and login table. You will create login form. Place on the form one picture box, two labels, one combo box, one text box, and two buttons. In Tutorial 2, you will build a school inventory project where you can store information about valuables in school. The table will have nine fields: Item (description of the item), Quantity, Location (where the item was placed), Shop (where the item was purchased), DatePurchased (when the item was purchased), Cost (how much the item cost), SerialNumber (serial number of the item), PhotoFile (path of the photo file of the item), and Fragile (indicates whether a particular item is fragile or not). In Tutorial 3, you will perform the steps necessary to add 5 new tables using phpMyAdmin into Academy database. You will build each table and add the associated fields as needed. Every table in the database will need input form. In this tutorial, you will build such a form for Author table. Although this table is quite simple (only four fields: AuthorID, Name, BirthDate, and PhotoFile), it provides a basis for illustrating the many steps in interface design. SQL statement is required by the Command object to read fields (sorted by Name). Then, you will build an interface so that the user can maintain the Publisher table in the database (Academy). The Publisher table interface is more or less the same as Author table interface. This Publisher table interface only requires more input fields. So you will use the interface for the Author table and modify it for the Publisher table. In Tutorial 4, you will perform the steps necessary to design and implement title form, library member form, and book borrowal form. You start by designing and testing the basic entry form for book titles. The Title table has nine fields: BookTitle, PublishYear, ISBN, PublisherID, AuthorID, Description, Note, Subject, and Comment. Then, you will build such a form for Member table. This table has twelve fields: MemberID, FirstName, LastName, BirthDate, Status, Ethnicity, Nationality, Mobile, Phone, Religion, Gender, and PhotoFile). You need thirteen label controls, one picture box, six text boxes, four comboxes, one check box, one date time picker, one openfiledialog, and one printpreviewdialog. You also need four buttons for navigation, six buttons for controlling editing features, one button for searching member’s name, and one button to upload member’s photo. Finally, you will build such a form for Borrow table. This table has seven fields: BorrowID, MemberID, BorrowCode, ISBN, BorrowDate, ReturnDate, and Penalty. In this form, you need fourteen label controls, seven text boxes, two comboxes, two date time pickers, and one printpreviewdialog. You also need four buttons for navigation, seven buttons for other utilities, one button to generate borrowal code, and one button to return book. BOOK 2: LEARN FROM SCRATCH VISUAL BASIC .NET WITH MYSQL This book will teach you with step-by-step approach to develop from scratch a MySQL-driven desktop application that readers can develop for their own purposes to implement school database project using Visual Basic .NET. In Tutorial 1, you will perform the steps necessary to add 8 tables using phpMyAdmin into School database that you will create. You will build each table and add the associated fields as needed. In this tutorial, you will also build login form and main form. In Tutorial 2, you will build such a form for Parent table. This table has thirteen fields: ParentID, FirstName, LastName, BirthDate, Status, Ethnicity, Nationality, Mobile, Phone, Religion, Gender, PhotoFile, and FingerFile). You need fourteen label controls, two picture boxes, six text boxes, four comboxes, one check box, one date time picker, one openfiledialog, and one printpreviewdialog. You also need four buttons for navigation, six buttons for other utilities, one button for searching member’s name, one button to upload parent’s photo, and button to upload parent’s finger. Place these controls on the form. In Tutorial 3, you will build such a form for Student table. This table has fifteen fields: StudentID, ParentID, FirstName, LastName, BirthDate, YearEntry, Status, Ethnicity, Nationality, Mobile, Phone, Religion, Gender, PhotoFile, and FingerFile). You need sixteen label controls, two picture boxes, six text boxes, five comboxes, one check box, two date time pickers, one openfiledialog, and one printpreviewdialog. You also need four buttons for navigation, seven buttons for controlling editing features, one button for searching parent’s name, one button to open parent form, one button to upload student’s photo, and one button to upload student’s finger. In Tutorial 4, you will build a form for Teacher table. This table has fifteen fields: TeacherID, RegNumber, FirstName, LastName, BirthDate, Rank, Status, Ethnicity, Nationality, Mobile, Phone, Religion, Gender, PhotoFile, and FingerFile). You need an input form so that user can edit existing records, delete records, or add new records. The form will also have the capability of navigating from one record to another. You need sixteen label controls, one picture box, seven text boxes, five comboxes, one check box, one date time picker, one openfiledialog, and one printpreviewdialog. You also need four buttons for navigation, six buttons for controlling editing features, one button for searching teacher’s name, and one button to upload teacher’s photo. In Tutorial 5, you will build a form for Subject table. This table has only three fields: SubjectID, Name, and Description. You need four label controls, four text boxes, one openfiledialog, and one printpreviewdialog. You also need four buttons for navigation, secen buttons for utilities, and one button for searching subject name. Place these controls on the form. You will also build a form for Grade table. This table has seven fields: GradeID, Name, SubjectID, TeacherID, SchoolYear, TimaStart, and TimeFinish. You need to add seven label controls, one text box, four comboxes, and two date time pickers. You also need four buttons for navigation, seven buttons for controlling editing features, one button to open subject form, and one button to open teacher form. In Tutorial 6, you will build a form for Grade_Student table. This table has only three fields: Grade_StudentID, GradeID, and StudentID. You need an input form so that user can edit existing records, delete records, or add new records. The form will also have the capability of navigating from one record to another. You need two label controls and two comboxes. You also need four buttons for navigation, seven buttons for controlling editing features, one button to open grade form, and one button to open student form.

Two Books In One: Learn From Scratch Visual C# .NET with SQL SERVER and MYSQL

Two Books In One: Learn From Scratch Visual C# .NET with SQL SERVER and MYSQL PDF Author: Vivian Siahaan
Publisher: BALIGE PUBLISHING
ISBN:
Category : Computers
Languages : en
Pages : 1371

Get Book Here

Book Description
BOOK 1: LEARN FROM SCRATCH VISUAL C# .NET WITH SQL SERVER To Develop Database-Driven Desktop Applications In Tutorial 1, you will start building a Visual C# interface for database management system project with SQL Server. The database, named DBMS, is created. The designed interface in this tutorial will used as the main terminal in accessing other forms. This tutorial will also discuss how to create login form and login table. In Tutorial 2, you will build a project, as part of database management system, where you can store information about valuables in school. In Tutorial 3 up to Tutorial 4, you will perform the steps necessary to add 6 tables into DBMS database. You will build each table and add the associated fields as needed. In this tutorials, you will create a library database project, as part of database management system, where you can store all information about library including author, title, and publisher. In Tutorial 5 up to Tutorial 7, you will perform the steps necessary to add 6 more tables into DBMS database. You will build each table and add the associated fields as needed. In this tutorials, you will create a high school database project, as part of database management system, where you can store all information about school including parent, teacher, student, subject, and, title, and grade. BOOK 2: LEARN FROM SCRATCH VISUAL C# .NET WITH MYSQL To Develop Database-Driven Desktop Applications In Tutorial 1, you will start building a Visual C# interface for database management system project using MySQL. The database, named DBMS, is created. The designed interface in this tutorial will used as the main terminal in accessing other forms. This tutorial will also discuss how to create login form and login table. In Tutorial 2, you will build a project, as part of database management system, where you can store information about valuables in school. The table will have seven fields: Item (description of the item), Location (where the item was placed), Shop (where the item was purchased), DatePurchased (when the item was purchased), Cost (how much the item cost), SerialNumber (serial number of the item), PhotoFile (path of the photo file of the item), and Fragile (indicates whether a particular item is fragile or not). In Tutorial 3 up to Tutorial 4, you will perform the steps necessary to add 6 tables using phpMyAdmin into DBMS database. You will build each table and add the associated fields as needed. In this tutorials, you will create a library database project, as part of database management system, where you can store all information about library including author, title, and publisher. In Tutorial 5 up to Tutorial 7, you will perform the steps necessary to add 8 more tables using phpMyAdmin into DBMS database. You will build each table and add the associated fields as needed. In this tutorials, you will create a high school database project, as part of database management system, where you can store all information about school including parent, teacher, student, subject, and, title, and grade.

VISUAL C# .NET WITH MYSQL

VISUAL C# .NET WITH MYSQL PDF Author: Vivian Siahaan
Publisher: BALIGE PUBLISHING
ISBN:
Category : Computers
Languages : en
Pages : 348

Get Book Here

Book Description
In chapter one, you will learn to know the properties and events of each control in a Windows Visual C# application. You need to learn and know in order to be more familiar when applying them to some applications in this book. In chapter two, you will go through step by step to build a SALES database using MySQL. You will build each table and add associated data fields (along with the necessary keys and indexes). The first field in the Client table is ClientID. Enter the clien ID in the Name Field and select AutoNumber in the Data Type. You define primary key and other indexes which are useful for quick searching. ClientID is a primary field. You will define FamilyName as an index. You then will create Ordering table with three fields: OrderID, ClientID, and OrderDate. You then will create Purchase table with three fields: OrderID, ProductID, and Quantity. And you will create Product table with four fields: ProductID, Description, Price, and QtySold. Before designing Visual C# interface, you will build the relationships between four tables. The interface will be used to enter new orders into the database. The order form will be used to enter the following information into the database: order ID, order date, client ID, client’s first name and family name, client’s address, product information ordered. The form will have the ability to add new orders, find clients, add new clients. The completed order invoice will be provided in a printed report. In chapter three, you will build a database management system where you can store information about valuables in your warehouse. The table will have seven fields: Item (description of the item), Location (where the item was placed), Shop (where the item was purchased), DatePurchased (when the item was purchased), Cost (how much the item cost), SerialNumber (serial number of the item), PhotoFile (path of the photo file of the item), and Fragile (indicates whether a particular item is fragile or not). The development of this Warehouse Inventory Project will be performed, as usual, in a step-by-step manner. You will first create the database. Furthermore, the interface will be built so that the user can view, edit, add, or add data records from the database. Finally, you add code to create a printable list of information from the database. In chapter four, you will build an application that can be used to track daily high and low pollutant PM2.5 and air quality level. The steps that need to be taken in building Siantar Air Quality Index (SAQI) database project are: Build and test a Visual C# interface; Create an empty database using code; and Report database. The designed interface will allow the user to enter max pollutant, min pollutant, and air quality for any date that the user chooses in a particular year. This information will be stored in a database. Graphical result of the data will be provided, along with summary information relating to the maximum value, minimum value, and mean value. You will use a tab control as the main component of the interface. The control has three tabs: one for viewing and editing data, one for viewing graph of pollutant data, and another for viewing graph of air quality data. Each tab on this control operates like a Visual C# control panel. In chapter five, you will perform the steps necessary to build a MySQL book inventory database that contains 4 tables. You will build each table and add the associated fields as needed. You will have four tables in the database and define the relationship between the primary key and foreign key. You will associate AuthorID (foreign key) field in the Title_Author table with AuthorID (primary key) in the Author table. Then, you want to associate the ISBN (foreign key) field in Title_Author table with ISBN (primary key) in the Title table.

Building Two Desktop Applications Using Python GUI and MySQL

Building Two Desktop Applications Using Python GUI and MySQL PDF Author: Vivian Siahaan
Publisher: SPARTA PUBLISHING
ISBN:
Category : Computers
Languages : en
Pages : 541

Get Book Here

Book Description
In this book, you will create two desktop applications using Python GUI and MySQL. In this book, you will learn how to build from scratch a MySQL database management system using PyQt. In designing a GUI, you will make use of the Qt Designer tool. Gradually and step by step, you will be taught how to use MySQL in Python. In the first three chapters, you will learn Basic MySQL statements including how to implement querying data, sorting data, filtering data, joining tables, grouping data, subquerying data, dan setting operators. Aside from learning basic SQL statements, you will also learn step by step how to develop stored procedures in MySQL. First, we introduce you to the stored procedure concept and discuss when you should use it. Then, we show you how to use the basic elements of the procedure code such as create procedure statement, if-else, case, loop, stored procedure’s parameters. In the fourth chapter, you will learn: How PyQt and Qt Designer are used to create Python GUIs; How to create a basic Python GUI that utilizes a Line Edit and a Push Button. In the fifth chapter, you will study: Creating the initial three table in the School database project: Teacher table, Class table, and Subject table; Creating database configuration files; Creating a Python GUI for viewing and navigating the contents of each table. Creating a Python GUI for inserting and editing tables; and Creating a Python GUI to merge and query the three tables. In chapter six, you will learn: Creating the main form to connect all forms; Creating a project that will add three more tables to the school database: the Student table, the Parent table, and the Tuition table; Creating a Python GUI to view and navigate the contents of each table; Creating a Python GUI for editing, inserting, and deleting records in each table; Create a Python GUI to merge and query the three tables and all six tables. In chapter seven, you will create new database dan configure it. In this chapter, you will create Suspect table in crime database. This table has eleven columns: suspect_id (primary key), suspect_name, birth_date, case_date, report_date, suspect_ status, arrest_date, mother_name, address, telephone, and photo. You will also create GUI to display, edit, insert, and delete for this table. In chapter eight, you will create a table with the name Feature_Extraction, which has eight columns: feature_id (primary key), suspect_id (foreign key), feature1, feature2, feature3, feature4, feature5, and feature6. The six fields (except keys) will have a VARCHAR data type (200). You will also create GUI to display, edit, insert, and delete for this table. In chapter nine, you will create two tables, Police and Investigator. The Police table has six columns: police_id (primary key), province, city, address, telephone, and photo. The Investigator table has eight columns: investigator_id (primary key), investigator_name, rank, birth_date, gender, address, telephone, and photo. You will also create GUI to display, edit, insert, and delete for both tables. In chapter ten, you will create two tables, Victim and Case_File. The Vicbtim table has nine columns: victim_id (primary key), victim_name, crime_type, birth_date, crime_date, gender, address, telephone, and photo. The Case_File table has seven columns: case_file_id (primary key), suspect_id (foreign key), police_id (foreign key), investigator_id (foreign key), victim_id (foreign key), status, and description. You will create GUI to display, edit, insert, and delete for both tables as well.

BUILDING TWO DESKTOP APPLICATIONS USING PYTHON GUI AND POSTGRESQL

BUILDING TWO DESKTOP APPLICATIONS USING PYTHON GUI AND POSTGRESQL PDF Author: Vivian Siahaan
Publisher: SPARTA PUBLISHING
ISBN:
Category : Computers
Languages : en
Pages : 537

Get Book Here

Book Description
In this book, you will create two desktop applications using Python GUI and PostgreSQL. This book is a Python/PostgreSQL version of the Python/MySQL book which was written by the author. What underlies the writing of this book is the growing popularity of the PostgreSQL database server lately and more and more programmers migrating from MySQL to PostgreSQL. In this book, you will learn to build a school database project, step by step. A number of widgets from PyQt will be used for the user interface. In the first and second chapter, you will get introduction of postgresql. And then, you will learn querying data from the postgresql using Python including establishing a database connection, creating a statement object, executing the query, processing the resultset object, querying data using a statement that returns multiple rows, querying data using a statement that has parameters, inserting data into a table using Python, updating data in postgresql database using Python, calling postgresql stored function using Python, deleting data from a postgresql table using Python, and postgresql Python transaction. In the fourth chapter, you will study: Creating the initial three table in the School database project: Teacher table, Class table, and Subject table; Creating database configuration files; Creating a Python GUI for viewing and navigating the contents of each table. Creating a Python GUI for inserting and editing tables; and Creating a Python GUI to merge and query the three tables. In chapter five, you will learn: Creating the main form to connect all forms; Creating a project that will add three more tables to the school database: the Student table, the Parent table, and the Tuition table; Creating a Python GUI to view and navigate the contents of each table; Creating a Python GUI for editing, inserting, and deleting records in each table; Create a Python GUI to merge and query the three tables and all six tables. In chapter six, you will create dan configure PotgreSQL database. In this chapter, you will create Suspect table in crime database. This table has eleven columns: suspect_id (primary key), suspect_name, birth_date, case_date, report_date, suspect_ status, arrest_date, mother_name, address, telephone, and photo. You will also create GUI to display, edit, insert, and delete for this table. In chapter seven, you will create a table with the name Feature_Extraction, which has eight columns: feature_id (primary key), suspect_id (foreign key), feature1, feature2, feature3, feature4, feature5, and feature6. The six fields (except keys) will have a VARCHAR data type (200). You will also create GUI to display, edit, insert, and delete for this table. In chapter eight, you will create two tables, Police and Investigator. The Police table has six columns: police_id (primary key), province, city, address, telephone, and photo. The Investigator table has eight columns: investigator_id (primary key), investigator_name, rank, birth_date, gender, address, telephone, and photo. You will also create GUI to display, edit, insert, and delete for both tables. In chapter nine, you will create two tables, Victim and Case_File. The Victim table has nine columns: victim_id (primary key), victim_name, crime_type, birth_date, crime_date, gender, address, telephone, and photo. The Case_File table has seven columns: case_file_id (primary key), suspect_id (foreign key), police_id (foreign key), investigator_id (foreign key), victim_id (foreign key), status, and description. You will create GUI to display, edit, insert, and delete for both tables as well.

The Quick Tutorial to Learn Database Programming Using Python GUI with MariaDB and PostgreSQL

The Quick Tutorial to Learn Database Programming Using Python GUI with MariaDB and PostgreSQL PDF Author: Vivian Siahaan
Publisher: SPARTA PUBLISHING
ISBN:
Category : Computers
Languages : en
Pages : 534

Get Book Here

Book Description
In this book, you will create two MariaDB and PostgreSQL driven projects using PyQt. The step-by-step guide in this book is expected to help the reader's confidence to become a programmer who can solve database programming problems. A progressive project is provided to demonstrate how to apply the concepts of MariaDB and PostgreSQL using Python. In second chapter, you will learn PyQt that consists of a number of Python bindings for cross-platform applications that combine all the strengths of Qt and Python. By using PyQt, you can include all Qt libraries in Python code, so you can write GUI applications in Python. In other words, you can use PyQt to access all the features provided by Qt through Python code. Because PyQt depends on the Qt libraries at run time, you need to install PyQt. In third chapter, you will learn: How to create the initial three tables project in the School database: Teacher, Class, and Subject tables; How to create database configuration files; How to create a Python GUI for inserting and editing tables; How to create a Python GUI to join and query the three tables. In fourth chapter, you will learn how to: Create a main form to connect all forms; Create a project will add three more tables to the school database: Student, Parent, and Tuition tables; Create a Python GUI for inserting and editing tables; Create a Python GUI to join and query over the three tables. In this chapter, you will join the six classes, Teacher, TClass, Subject, Student, Parent, and Tuition and make queries over those tables. In chapter five, you will create dan configure PotgreSQL database. In this chapter, you will create Suspect table in crime database. This table has eleven columns: suspect_id (primary key), suspect_name, birth_date, case_date, report_date, suspect_ status, arrest_date, mother_name, address, telephone, and photo. You will also create GUI to display, edit, insert, and delete for this table. In chapter six, you will create a table with the name Feature_Extraction, which has eight columns: feature_id (primary key), suspect_id (foreign key), feature1, feature2, feature3, feature4, feature5, and feature6. The six fields (except keys) will have a VARCHAR data type (200). You will also create GUI to display, edit, insert, and delete for this table. In chapter seven, you will create two tables, Police and Investigator. The Police table has six columns: police_id (primary key), province, city, address, telephone, and photo. The Investigator table has eight columns: investigator_id (primary key), investigator_name, rank, birth_date, gender, address, telephone, and photo. You will also create GUI to display, edit, insert, and delete for both tables. In chapter eight, you will create two tables, Victim and Case_File. The Victim table has nine columns: victim_id (primary key), victim_name, crime_type, birth_date, crime_date, gender, address, telephone, and photo. The Case_File table has seven columns: case_file_id (primary key), suspect_id (foreign key), police_id (foreign key), investigator_id (foreign key), victim_id (foreign key), status, and description. You will create GUI to display, edit, insert, and delete for both tables as well.

Data Science and Deep Learning Workshop For Scientists and Engineers

Data Science and Deep Learning Workshop For Scientists and Engineers PDF Author: Vivian Siahaan
Publisher: BALIGE PUBLISHING
ISBN:
Category : Computers
Languages : en
Pages : 1977

Get Book Here

Book Description
WORKSHOP 1: In this workshop, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to implement deep learning on recognizing traffic signs using GTSRB dataset, detecting brain tumor using Brain Image MRI dataset, classifying gender, and recognizing facial expression using FER2013 dataset In Chapter 1, you will learn to create GUI applications to display line graph using PyQt. You will also learn how to display image and its histogram. In Chapter 2, you will learn how to use TensorFlow, Keras, Scikit-Learn, Pandas, NumPy and other libraries to perform prediction on handwritten digits using MNIST dataset with PyQt. You will build a GUI application for this purpose. In Chapter 3, you will learn how to perform recognizing traffic signs using GTSRB dataset from Kaggle. There are several different types of traffic signs like speed limits, no entry, traffic signals, turn left or right, children crossing, no passing of heavy vehicles, etc. Traffic signs classification is the process of identifying which class a traffic sign belongs to. In this Python project, you will build a deep neural network model that can classify traffic signs in image into different categories. With this model, you will be able to read and understand traffic signs which are a very important task for all autonomous vehicles. You will build a GUI application for this purpose. In Chapter 4, you will learn how to perform detecting brain tumor using Brain Image MRI dataset provided by Kaggle (https://www.kaggle.com/navoneel/brain-mri-images-for-brain-tumor-detection) using CNN model. You will build a GUI application for this purpose. In Chapter 5, you will learn how to perform classifying gender using dataset provided by Kaggle (https://www.kaggle.com/cashutosh/gender-classification-dataset) using MobileNetV2 and CNN models. You will build a GUI application for this purpose. In Chapter 6, you will learn how to perform recognizing facial expression using FER2013 dataset provided by Kaggle (https://www.kaggle.com/nicolejyt/facialexpressionrecognition) using CNN model. You will also build a GUI application for this purpose. WORKSHOP 2: In this workshop, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to implement deep learning on classifying fruits, classifying cats/dogs, detecting furnitures, and classifying fashion. In Chapter 1, you will learn to create GUI applications to display line graph using PyQt. You will also learn how to display image and its histogram. Then, you will learn how to use OpenCV, NumPy, and other libraries to perform feature extraction with Python GUI (PyQt). The feature detection techniques used in this chapter are Harris Corner Detection, Shi-Tomasi Corner Detector, and Scale-Invariant Feature Transform (SIFT). In Chapter 2, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform classifying fruits using Fruits 360 dataset provided by Kaggle (https://www.kaggle.com/moltean/fruits/code) using Transfer Learning and CNN models. You will build a GUI application for this purpose. In Chapter 3, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform classifying cats/dogs using dataset provided by Kaggle (https://www.kaggle.com/chetankv/dogs-cats-images) using Using CNN with Data Generator. You will build a GUI application for this purpose. In Chapter 4, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform detecting furnitures using Furniture Detector dataset provided by Kaggle (https://www.kaggle.com/akkithetechie/furniture-detector) using VGG16 model. You will build a GUI application for this purpose. In Chapter 5, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform classifying fashion using Fashion MNIST dataset provided by Kaggle (https://www.kaggle.com/zalando-research/fashionmnist/code) using CNN model. You will build a GUI application for this purpose. WORKSHOP 3: In this workshop, you will implement deep learning on detecting vehicle license plates, recognizing sign language, and detecting surface crack using TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries. In Chapter 1, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform detecting vehicle license plates using Car License Plate Detection dataset provided by Kaggle (https://www.kaggle.com/andrewmvd/car-plate-detection/download). In Chapter 2, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform sign language recognition using Sign Language Digits Dataset provided by Kaggle (https://www.kaggle.com/ardamavi/sign-language-digits-dataset/download). In Chapter 3, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform detecting surface crack using Surface Crack Detection provided by Kaggle (https://www.kaggle.com/arunrk7/surface-crack-detection/download). WORKSHOP 4: In this workshop, implement deep learning-based image classification on detecting face mask, classifying weather, and recognizing flower using TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries. In Chapter 1, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform detecting face mask using Face Mask Detection Dataset provided by Kaggle (https://www.kaggle.com/omkargurav/face-mask-dataset/download). In Chapter 2, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform how to classify weather using Multi-class Weather Dataset provided by Kaggle (https://www.kaggle.com/pratik2901/multiclass-weather-dataset/download). WORKSHOP 5: In this workshop, implement deep learning-based image classification on classifying monkey species, recognizing rock, paper, and scissor, and classify airplane, car, and ship using TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries. In Chapter 1, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform how to classify monkey species using 10 Monkey Species dataset provided by Kaggle (https://www.kaggle.com/slothkong/10-monkey-species/download). In Chapter 2, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform how to recognize rock, paper, and scissor using 10 Monkey Species dataset provided by Kaggle (https://www.kaggle.com/sanikamal/rock-paper-scissors-dataset/download). WORKSHOP 6: In this worksshop, you will implement two data science projects using Scikit-Learn, Scipy, and other libraries with Python GUI. In Chapter 1, you will learn how to use Scikit-Learn, Scipy, and other libraries to perform how to predict traffic (number of vehicles) in four different junctions using Traffic Prediction Dataset provided by Kaggle (https://www.kaggle.com/fedesoriano/traffic-prediction-dataset/download). This dataset contains 48.1k (48120) observations of the number of vehicles each hour in four different junctions: 1) DateTime; 2) Juction; 3) Vehicles; and 4) ID. In Chapter 2, you will learn how to use Scikit-Learn, NumPy, Pandas, and other libraries to perform how to analyze and predict heart attack using Heart Attack Analysis & Prediction Dataset provided by Kaggle (https://www.kaggle.com/rashikrahmanpritom/heart-attack-analysis-prediction-dataset/download). WORKSHOP 7: In this workshop, you will implement two data science projects using Scikit-Learn, Scipy, and other libraries with Python GUI. In Project 1, you will learn how to use Scikit-Learn, NumPy, Pandas, Seaborn, and other libraries to perform how to predict early stage diabetes using Early Stage Diabetes Risk Prediction Dataset provided by Kaggle (https://www.kaggle.com/ishandutta/early-stage-diabetes-risk-prediction-dataset/download). This dataset contains the sign and symptpom data of newly diabetic or would be diabetic patient. This has been collected using direct questionnaires from the patients of Sylhet Diabetes Hospital in Sylhet, Bangladesh and approved by a doctor. You will develop a GUI using PyQt5 to plot distribution of features, feature importance, cross validation score, and prediced values versus true values. The machine learning models used in this project are Adaboost, Random Forest, Gradient Boosting, Logistic Regression, and Support Vector Machine. In Project 2, you will learn how to use Scikit-Learn, NumPy, Pandas, and other libraries to perform how to analyze and predict breast cancer using Breast Cancer Prediction Dataset provided by Kaggle (https://www.kaggle.com/merishnasuwal/breast-cancer-prediction-dataset/download). Worldwide, breast cancer is the most common type of cancer in women and the second highest in terms of mortality rates.Diagnosis of breast cancer is performed when an abnormal lump is found (from self-examination or x-ray) or a tiny speck of calcium is seen (on an x-ray). After a suspicious lump is found, the doctor will conduct a diagnosis to determine whether it is cancerous and, if so, whether it has spread to other parts of the body. This breast cancer dataset was obtained from the University of Wisconsin Hospitals, Madison from Dr. William H. Wolberg. You will develop a GUI using PyQt5 to plot distribution of features, pairwise relationship, test scores, prediced values versus true values, confusion matrix, and decision boundary. The machine learning models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, and Support Vector Machine. WORKSHOP 8: In this workshop, you will learn how to use Scikit-Learn, TensorFlow, Keras, NumPy, Pandas, Seaborn, and other libraries to implement brain tumor classification and detection with machine learning using Brain Tumor dataset provided by Kaggle. This dataset contains five first order features: Mean (the contribution of individual pixel intensity for the entire image), Variance (used to find how each pixel varies from the neighboring pixel 0, Standard Deviation (the deviation of measured Values or the data from its mean), Skewness (measures of symmetry), and Kurtosis (describes the peak of e.g. a frequency distribution). It also contains eight second order features: Contrast, Energy, ASM (Angular second moment), Entropy, Homogeneity, Dissimilarity, Correlation, and Coarseness. The machine learning models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, and Support Vector Machine. The deep learning models used in this project are MobileNet and ResNet50. In this project, you will develop a GUI using PyQt5 to plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, training loss, and training accuracy. WORKSHOP 9: In this workshop, you will learn how to use Scikit-Learn, Keras, TensorFlow, NumPy, Pandas, Seaborn, and other libraries to perform COVID-19 Epitope Prediction using COVID-19/SARS B-cell Epitope Prediction dataset provided in Kaggle. All of three datasets consists of information of protein and peptide: parent_protein_id : parent protein ID; protein_seq : parent protein sequence; start_position : start position of peptide; end_position : end position of peptide; peptide_seq : peptide sequence; chou_fasman : peptide feature; emini : peptide feature, relative surface accessibility; kolaskar_tongaonkar : peptide feature, antigenicity; parker : peptide feature, hydrophobicity; isoelectric_point : protein feature; aromacity: protein feature; hydrophobicity : protein feature; stability : protein feature; and target : antibody valence (target value). The machine learning models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, Gradient Boosting, XGB classifier, and MLP classifier. Then, you will learn how to use sequential CNN and VGG16 models to detect and predict Covid-19 X-RAY using COVID-19 Xray Dataset (Train & Test Sets) provided in Kaggle. The folder itself consists of two subfolders: test and train. Finally, you will develop a GUI using PyQt5 to plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, training loss, and training accuracy. WORKSHOP 10: In this workshop, you will learn how to use Scikit-Learn, Keras, TensorFlow, NumPy, Pandas, Seaborn, and other libraries to perform analyzing and predicting stroke using dataset provided in Kaggle. The dataset consists of attribute information: id: unique identifier; gender: "Male", "Female" or "Other"; age: age of the patient; hypertension: 0 if the patient doesn't have hypertension, 1 if the patient has hypertension; heart_disease: 0 if the patient doesn't have any heart diseases, 1 if the patient has a heart disease; ever_married: "No" or "Yes"; work_type: "children", "Govt_jov", "Never_worked", "Private" or "Self-employed"; Residence_type: "Rural" or "Urban"; avg_glucose_level: average glucose level in blood; bmi: body mass index; smoking_status: "formerly smoked", "never smoked", "smokes" or "Unknown"; and stroke: 1 if the patient had a stroke or 0 if not. The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and CNN 1D. Finally, you will develop a GUI using PyQt5 to plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performace of the model, scalability of the model, training loss, and training accuracy. WORKSHOP 11: In this workshop, you will learn how to use Scikit-Learn, Keras, TensorFlow, NumPy, Pandas, Seaborn, and other libraries to perform classifying and predicting Hepatitis C using dataset provided by UCI Machine Learning Repository. All attributes in dataset except Category and Sex are numerical. Attributes 1 to 4 refer to the data of the patient: X (Patient ID/No.), Category (diagnosis) (values: '0=Blood Donor', '0s=suspect Blood Donor', '1=Hepatitis', '2=Fibrosis', '3=Cirrhosis'), Age (in years), Sex (f,m), ALB, ALP, ALT, AST, BIL, CHE, CHOL, CREA, GGT, and PROT. The target attribute for classification is Category (2): blood donors vs. Hepatitis C patients (including its progress ('just' Hepatitis C, Fibrosis, Cirrhosis). The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and ANN 1D. Finally, you will develop a GUI using PyQt5 to plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performace of the model, scalability of the model, training loss, and training accuracy.

Hands-On Guide On Data Science and Machine Learning with Python GUI

Hands-On Guide On Data Science and Machine Learning with Python GUI PDF Author: Vivian Siahaan
Publisher: BALIGE PUBLISHING
ISBN:
Category : Computers
Languages : en
Pages : 222

Get Book Here

Book Description
In this book, you will implement two data science projects using Scikit-Learn, Scipy, and other libraries with Python GUI. In Chapter 1, you will learn how to use Scikit-Learn, Scipy, and other libraries to perform how to predict traffic (number of vehicles) in four different junctions using Traffic Prediction Dataset provided by Kaggle (https://www.kaggle.com/fedesoriano/traffic-prediction-dataset/download). This dataset contains 48.1k (48120) observations of the number of vehicles each hour in four different junctions: 1) DateTime; 2) Juction; 3) Vehicles; and 4) ID. In Chapter 2, you will learn how to use Scikit-Learn, NumPy, Pandas, and other libraries to perform how to analyze and predict heart attack using Heart Attack Analysis & Prediction Dataset provided by Kaggle (https://www.kaggle.com/rashikrahmanpritom/heart-attack-analysis-prediction-dataset/download). In Chapter 3, you will learn how to use Scikit-Learn, SVM, NumPy, Pandas, and other libraries to perform how to predict early stage diabetes using Early Stage Diabetes Risk Prediction Dataset provided by Kaggle (https://www.kaggle.com/ishandutta/early-stage-diabetes-risk-prediction-dataset/download). This dataset contains the sign and symptpom data of newly diabetic or would be diabetic patient. This has been collected using direct questionnaires from the patients of Sylhet Diabetes Hospital in Sylhet, Bangladesh and approved by a doctor.

A Guide to Python GUI Programming with MySQL

A Guide to Python GUI Programming with MySQL PDF Author: Vivian Siahaan
Publisher: SPARTA PUBLISHING
ISBN:
Category : Computers
Languages : en
Pages : 541

Get Book Here

Book Description
In this book, you will create two desktop applications using Python GUI and MySQL. In this book, you will learn how to build from scratch a MySQL database management system using PyQt. In designing a GUI, you will make use of the Qt Designer tool. Gradually and step by step, you will be taught how to use MySQL in Python. In the first three chapters, you will learn Basic MySQL statements including how to implement querying data, sorting data, filtering data, joining tables, grouping data, subquerying data, dan setting operators. Aside from learning basic SQL statements, you will also learn step by step how to develop stored procedures in MySQL. First, we introduce you to the stored procedure concept and discuss when you should use it. Then, we show you how to use the basic elements of the procedure code such as create procedure statement, if-else, case, loop, stored procedure’s parameters. In the fourth chapter, you will learn: How PyQt and Qt Designer are used to create Python GUIs; How to create a basic Python GUI that utilizes a Line Edit and a Push Button. In the fifth chapter, you will study: Creating the initial three table in the School database project: Teacher table, Class table, and Subject table; Creating database configuration files; Creating a Python GUI for viewing and navigating the contents of each table. Creating a Python GUI for inserting and editing tables; and Creating a Python GUI to merge and query the three tables. In chapter six, you will learn: Creating the main form to connect all forms; Creating a project that will add three more tables to the school database: the Student table, the Parent table, and the Tuition table; Creating a Python GUI to view and navigate the contents of each table; Creating a Python GUI for editing, inserting, and deleting records in each table; Create a Python GUI to merge and query the three tables and all six tables. In chapter seven, you will create new database dan configure it. In this chapter, you will create Suspect table in crime database. This table has eleven columns: suspect_id (primary key), suspect_name, birth_date, case_date, report_date, suspect_ status, arrest_date, mother_name, address, telephone, and photo. You will also create GUI to display, edit, insert, and delete for this table. In chapter eight, you will create a table with the name Feature_Extraction, which has eight columns: feature_id (primary key), suspect_id (foreign key), feature1, feature2, feature3, feature4, feature5, and feature6. The six fields (except keys) will have a VARCHAR data type (200). You will also create GUI to display, edit, insert, and delete for this table. In chapter nine, you will create two tables, Police and Investigator. The Police table has six columns: police_id (primary key), province, city, address, telephone, and photo. The Investigator table has eight columns: investigator_id (primary key), investigator_name, rank, birth_date, gender, address, telephone, and photo. You will also create GUI to display, edit, insert, and delete for both tables. In chapter ten, you will create two tables, Victim and Case_File. The Vicbtim table has nine columns: victim_id (primary key), victim_name, crime_type, birth_date, crime_date, gender, address, telephone, and photo. The Case_File table has seven columns: case_file_id (primary key), suspect_id (foreign key), police_id (foreign key), investigator_id (foreign key), victim_id (foreign key), status, and description. You will create GUI to display, edit, insert, and delete for both tables as well.

A PROGRESSIVE TUTORIAL TO DATABASE PROGRAMMING WITH PYTHON GUI AND POSTGRESQL

A PROGRESSIVE TUTORIAL TO DATABASE PROGRAMMING WITH PYTHON GUI AND POSTGRESQL PDF Author: Vivian Siahaan
Publisher: SPARTA PUBLISHING
ISBN:
Category : Computers
Languages : en
Pages : 537

Get Book Here

Book Description
In this book, you will create two desktop applications using Python GUI and PostgreSQL. This book is a Python/PostgreSQL version of the Python/MySQL book which was written by the author. What underlies the writing of this book is the growing popularity of the PostgreSQL database server lately and more and more programmers migrating from MySQL to PostgreSQL. In this book, you will learn to build a school database project, step by step. A number of widgets from PyQt will be used for the user interface. In the first and second chapter, you will get introduction of postgresql. And then, you will learn querying data from the postgresql using Python including establishing a database connection, creating a statement object, executing the query, processing the resultset object, querying data using a statement that returns multiple rows, querying data using a statement that has parameters, inserting data into a table using Python, updating data in postgresql database using Python, calling postgresql stored function using Python, deleting data from a postgresql table using Python, and postgresql Python transaction. In the fourth chapter, you will study: Creating the initial three table in the School database project: Teacher table, Class table, and Subject table; Creating database configuration files; Creating a Python GUI for viewing and navigating the contents of each table. Creating a Python GUI for inserting and editing tables; and Creating a Python GUI to merge and query the three tables. In chapter five, you will learn: Creating the main form to connect all forms; Creating a project that will add three more tables to the school database: the Student table, the Parent table, and the Tuition table; Creating a Python GUI to view and navigate the contents of each table; Creating a Python GUI for editing, inserting, and deleting records in each table; Create a Python GUI to merge and query the three tables and all six tables. In chapter six, you will create dan configure PotgreSQL database. In this chapter, you will create Suspect table in crime database. This table has eleven columns: suspect_id (primary key), suspect_name, birth_date, case_date, report_date, suspect_ status, arrest_date, mother_name, address, telephone, and photo. You will also create GUI to display, edit, insert, and delete for this table. In chapter seven, you will create a table with the name Feature_Extraction, which has eight columns: feature_id (primary key), suspect_id (foreign key), feature1, feature2, feature3, feature4, feature5, and feature6. The six fields (except keys) will have a VARCHAR data type (200). You will also create GUI to display, edit, insert, and delete for this table. In chapter eight, you will create two tables, Police and Investigator. The Police table has six columns: police_id (primary key), province, city, address, telephone, and photo. The Investigator table has eight columns: investigator_id (primary key), investigator_name, rank, birth_date, gender, address, telephone, and photo. You will also create GUI to display, edit, insert, and delete for both tables. In chapter nine, you will create two tables, Victim and Case_File. The Victim table has nine columns: victim_id (primary key), victim_name, crime_type, birth_date, crime_date, gender, address, telephone, and photo. The Case_File table has seven columns: case_file_id (primary key), suspect_id (foreign key), police_id (foreign key), investigator_id (foreign key), victim_id (foreign key), status, and description. You will create GUI to display, edit, insert, and delete for both tables as well.