Turbulent Flame Speed in Spark Ignition Engine Combustion Process Using Computational Fluid Dynamics

Turbulent Flame Speed in Spark Ignition Engine Combustion Process Using Computational Fluid Dynamics PDF Author: Muhammad Saiful Mustafa
Publisher:
ISBN:
Category : Flame
Languages : en
Pages : 43

Get Book Here

Book Description

Turbulent Flame Speed in Spark Ignition Engine Combustion Process Using Computational Fluid Dynamics

Turbulent Flame Speed in Spark Ignition Engine Combustion Process Using Computational Fluid Dynamics PDF Author: Muhammad Saiful Mustafa
Publisher:
ISBN:
Category : Flame
Languages : en
Pages : 43

Get Book Here

Book Description


Effect of Constant and Varying Mixture Properties in Spark Ignition Engine Combustion Process Using Computational Fluid Dynamics

Effect of Constant and Varying Mixture Properties in Spark Ignition Engine Combustion Process Using Computational Fluid Dynamics PDF Author: Omar Arshad
Publisher:
ISBN:
Category : Flame
Languages : en
Pages : 52

Get Book Here

Book Description
This project deals with the numerical setup about the effect of different mixture properties of premixed combustion material using Computational Fluid Dynamic (CFD). Mitsubishi Magma 4G15 is used as the base line engine design for the simulation model. 2000 revolution per minute (rpm) and 1000 iterations are set as the tested speed and the number of iterations per time step respectively. The simulation is started right before the spark ignited and when both valves are closed. The model is simulated at different mixture properties which are constant and varying mixture properties. The constant mixture properties value is taken from previous study. While the varying mixture properties is simulated using kinetic theory where only specific heat, thermal conductivity, and viscosity are varied. Case 1 is set as the constant mixture properties and also as the benchmark case. Case 2 until case 5 is the varying mixture properties with different value of L-J parameters. Case 1 gives only 2.19% of deviation from the experimental result on the peak pressure value and 25% deviation on the peak pressure timing. Meanwhile, for case 2 until case 5, they give as much as 22.34% until 45% deviation on peak pressure value and 100% until 162.5% deviations on the peak pressure timing. The key parameter that caused the results are the L-J parameters, mass fraction burned, and turbulence flame speed. The inaccuracy of the turbulence speed is mostly based on laminar flame speed, thermal conductivity, and specific heat. So, the study of L-J parameter is needed to ensure the perfect result in using kinetic theory approach.

Modelling Spark Ignition Combustion

Modelling Spark Ignition Combustion PDF Author: P. A. Lakshminarayanan
Publisher: Springer Nature
ISBN: 9819706297
Category :
Languages : en
Pages : 678

Get Book Here

Book Description


Flame Propagation in Spark Ignition Engine Combustion Process Using Computational Fluid Dynamics (CFD)

Flame Propagation in Spark Ignition Engine Combustion Process Using Computational Fluid Dynamics (CFD) PDF Author: Hanif Kasmani
Publisher:
ISBN:
Category : Flame
Languages : en
Pages : 45

Get Book Here

Book Description
This thesis deals with the flame propagation in spark ignition engine combustion process using Computational Fluid Dynamic (CFD). This study is based on flame propagation inside the combustion chamber which is important as flame propagation affects the engine efficiency, emission and some more. A 3-D model is created based on the Mitsubishi Magma 4G15 that act as a baseline engine. It is then simulated using CFD where its approaches make it a suitable platform to study the internal combustion engine phenomenon. The project simulates only 50o CA starting from the ignition until the completion of the combustion process. The flame radius obtain through simulation is then compared with the experimental data together with the literature review. However, there are discrepancies of the results due to improper boundary condition and inherit limitation of the model. For further simulation of combustion process must consider detail mixture properties, detail boundary condition and model extension for better accuracy data.

Modelling Spark Ignition Combustion

Modelling Spark Ignition Combustion PDF Author: P. A. Lakshminarayanan
Publisher: Springer
ISBN: 9789819706280
Category : Technology & Engineering
Languages : en
Pages : 0

Get Book Here

Book Description
The book provides a comprehensive overview of combustion models used in different types of spark ignition engines. In the first generation of spark ignition (SI) engines, the turbulence is created by the shear flow passing through the intake valves, and significantly decays during the intake and compression strokes. The residual turbulence enhances the laminar flame velocity, which is characteristic of the fuel and increases the relative effectiveness of the engine. In this simple two-zone model, the turbulence is estimated empirically; the spherical flame propagation model considers ignition delay, thermodynamics, heat transfer and chemical equilibrium, to obtain the performance and emissions of an SI engine. The model is used extensively by designers and research engineers to handle the fuel-air mixture prepared in the inlet and different geometries of open combustion chambers. The empiricism of the combustion model was progressively dismantled over the years. New 3D models for ignition considering the flow near a spark plug and flame propagation in the bulk gases were developed by incorporating solutions to Reynolds-averaged Navier-Stokes (RANS) equations for the turbulent flow with chemical reactions in the intense computational fluid dynamics. The models became far less empirical and enabled treating new generation direct-injection spark-ignition (DISI) gasoline and gas engines. The more complex layout of DISI engines with passive or active prechamber is successfully handled by them. This book presents details of models of SI engine combustion progressively increasing in complexity, making them accessible to designers, researchers, and even mechanical engineers who are curious to explore the field. This book is a valuable resource for anyone interested in spark ignition combustion.

Multiphysical Modelling of Regular and Irregular Combustion in Spark Ignition Engines Using an Integrated / Interactive Flamelet Approach

Multiphysical Modelling of Regular and Irregular Combustion in Spark Ignition Engines Using an Integrated / Interactive Flamelet Approach PDF Author: Linda Maria Beck
Publisher: Logos Verlag Berlin
ISBN: 9783832534264
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
The virtual development of future Spark Ignition (SI) engine combustion processes in three-dimensional Computational Fluid Dynamics (3D-CFD) demands for the integration of detailed chemistry, enabling - additionally to the 3D-CFD modelling of flow and mixture formation - the prediction of fuel-dependent SI engine combustion in all of its complexity. This work presents an approach, which constitutes a coupled solution for flame propagation, auto-ignition, and emission formation modelling incorporating detailed chemistry, while exhibiting low computational costs. For modelling the regular flame propagation, a laminar flamelet approach, the G-equation is used. Auto-ignition phenomena are addressed using an integrated flamelet approach, which bases on the tabulation of fuel-dependent reaction kinetics. By introducing a progress variable for the auto-ignition - the Ignition Progress Variable (IPV) - detailed chemistry is integrated in 3D-CFD. The modelling of emission formation bases on an interactively coupled flamelet approach, the Transient Interactive Flamelet (TIF) model. The functionality of the combined approach to model the variety of SI engine combustion phenomena is proved first in terms of fundamentals and standalone sub-model functionality studies by introducing a simplified test case, which represents an adiabatic pressure vessel without moving meshes. Following the basic functionality studies, the sub-model functionalities are investigated and validated in adequate engine test cases. It is shown, that the approach allows to detect locally occurring auto-ignition phenomena in the combustion chamber, and to model their interaction with regular flame propagation. Moreover, the approach enables the prediction of emission formation on cell level.

Modeling of End-Gas Autoignition for Knock Prediction in Gasoline Engines

Modeling of End-Gas Autoignition for Knock Prediction in Gasoline Engines PDF Author: Andreas Manz
Publisher: Logos Verlag Berlin GmbH
ISBN: 3832542817
Category : Science
Languages : en
Pages : 263

Get Book Here

Book Description
Downsizing of modern gasoline engines with direct injection is a key concept for achieving future CO22 emission targets. However, high power densities and optimum efficiency are limited by an uncontrolled autoignition of the unburned air-fuel mixture, the so-called spark knock phenomena. By a combination of three-dimensional Computational Fluid Dynamics (3D-CFD) and experiments incorporating optical diagnostics, this work presents an integral approach for predicting combustion and autoignition in Spark Ignition (SI) engines. The turbulent premixed combustion and flame front propagation in 3D-CFD is modeled with the G-equation combustion model, i.e. a laminar flamelet approach, in combination with the level set method. Autoignition in the unburned gas zone is modeled with the Shell model based on reduced chemical reactions using optimized reaction rate coefficients for different octane numbers (ON) as well as engine relevant pressures, temperatures and EGR rates. The basic functionality and sensitivities of improved sub-models, e.g. laminar flame speed, are proven in simplified test cases followed by adequate engine test cases. It is shown that the G-equation combustion model performs well even on unstructured grids with polyhedral cells and coarse grid resolution. The validation of the knock model with respect to temporal and spatial knock onset is done with fiber optical spark plug measurements and statistical evaluation of individual knocking cycles with a frequency based pressure analysis. The results show a good correlation with the Shell autoignition relevant species in the simulation. The combined model approach with G-equation and Shell autoignition in an active formulation enables a realistic representation of thin flame fronts and hence the thermodynamic conditions prior to knocking by taking into account the ignition chemistry in unburned gas, temperature fluctuations and self-acceleration effects due to pre-reactions. By the modeling approach and simulation methodology presented in this work the overall predictive capability for the virtual development of future knockproof SI engines is improved.

Fundamentals of Premixed Turbulent Combustion

Fundamentals of Premixed Turbulent Combustion PDF Author: Andrei Lipatnikov
Publisher: CRC Press
ISBN: 1466510242
Category : Science
Languages : en
Pages : 551

Get Book Here

Book Description
Lean burning of premixed gases is considered to be a promising combustion technology for future clean and highly efficient gas turbine combustors. Yet researchers face several challenges in dealing with premixed turbulent combustion, from its nonlinear multiscale nature and the impact of local phenomena to the multitude of competing models. Filling a gap in the literature, Fundamentals of Premixed Turbulent Combustion introduces the state of the art of premixed turbulent combustion in an accessible manner for newcomers and experienced researchers alike. To more deeply consider current research issues, the book focuses on the physical mechanisms and phenomenology of premixed flames, with a brief discussion of recent advances in partially premixed turbulent combustion. It begins with a summary of the relevant knowledge needed from disciplines such as thermodynamics, chemical kinetics, molecular transport processes, and fluid dynamics. The book then presents experimental data on the general appearance of premixed turbulent flames and details the physical mechanisms that could affect the flame behavior. It also examines the physical and numerical models for predicting the key features of premixed turbulent combustion. Emphasizing critical analysis, the book compares competing concepts and viewpoints with one another and with the available experimental data, outlining the advantages and disadvantages of each approach. In addition, it discusses recent advances and highlights unresolved issues. Written by a leading expert in the field, this book provides a valuable overview of the physics of premixed turbulent combustion. Combining simplicity and topicality, it helps researchers orient themselves in the contemporary literature and guides them in selecting the best research tools for their work.

Experiments and Modeling of a Turbulent Jet Ignition System for Internal Combustion Engines

Experiments and Modeling of a Turbulent Jet Ignition System for Internal Combustion Engines PDF Author: Masumeh Gholamisheeri
Publisher:
ISBN: 9780355160871
Category : Electronic dissertations
Languages : en
Pages : 192

Get Book Here

Book Description


Modeling Engine Spray and Combustion Processes

Modeling Engine Spray and Combustion Processes PDF Author: Gunnar Stiesch
Publisher: Springer Science & Business Media
ISBN: 9783540006824
Category : Computers
Languages : en
Pages : 314

Get Book Here

Book Description
The utilization of mathematical models to numerically describe the performance of internal combustion engines is of great significance in the development of new and improved engines. Today, such simulation models can already be viewed as standard tools, and their importance is likely to increase further as available com puter power is expected to increase and the predictive quality of the models is constantly enhanced. This book describes and discusses the most widely used mathematical models for in-cylinder spray and combustion processes, which are the most important subprocesses affecting engine fuel consumption and pollutant emissions. The relevant thermodynamic, fluid dynamic and chemical principles are summarized, and then the application of these principles to the in-cylinder processes is ex plained. Different modeling approaches for the each subprocesses are compared and discussed with respect to the governing model assumptions and simplifica tions. Conclusions are drawn as to which model approach is appropriate for a specific type of problem in the development process of an engine. Hence, this book may serve both as a graduate level textbook for combustion engineering stu dents and as a reference for professionals employed in the field of combustion en gine modeling. The research necessary for this book was carried out during my employment as a postdoctoral scientist at the Institute of Technical Combustion (ITV) at the Uni versity of Hannover, Germany and at the Engine Research Center (ERC) at the University of Wisconsin-Madison, USA.