Turbulence Modeling for Complex Hypersonic Flows

Turbulence Modeling for Complex Hypersonic Flows PDF Author: P. G. Huang
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description

Turbulence Modeling for Complex Hypersonic Flows

Turbulence Modeling for Complex Hypersonic Flows PDF Author: P. G. Huang
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Turbulence Modeling for Hypersonic Flows

Turbulence Modeling for Hypersonic Flows PDF Author: Joseph G. Marvin
Publisher:
ISBN:
Category :
Languages : en
Pages : 54

Get Book Here

Book Description


Advances in Hypersonics

Advances in Hypersonics PDF Author: Bertin
Publisher: Springer Science & Business Media
ISBN: 1461203716
Category : Science
Languages : en
Pages : 280

Get Book Here

Book Description
These three volumes entitled Advances in Hypersonics contain the Proceedings of the Second and Third Joint US/Europe Short Course in Hypersonics which took place in Colorado Springs and Aachen. The Second Course was organized at the US Air Force Academy, USA in January 1989 and the Third Course at Aachen, Germany in October 1990. The main idea of these Courses was to present to chemists, com puter scientists, engineers, experimentalists, mathematicians, and physicists state of the art lectures in scientific and technical dis ciplines including mathematical modeling, computational methods, and experimental measurements necessary to define the aerothermo dynamic environments for space vehicles such as the US Orbiter or the European Hermes flying at hypersonic speeds. The subjects can be grouped into the following areas: Phys ical environments, configuration requirements, propulsion systems (including airbreathing systems), experimental methods for external and internal flow, theoretical and numerical methods. Since hyper sonic flight requires highly integrated systems, the Short Courses not only aimed to give in-depth analysis of hypersonic research and technology but also tried to broaden the view of attendees to give them the ability to understand the complex problem of hypersonic flight. Most of the participants in the Short Courses prepared a docu ment based on their presentation for reproduction in the three vol umes. Some authors spent considerable time and energy going well beyond their oral presentation to provide a quality assessment of the state of the art in their area of expertise as of 1989 and 1991.

Turbulence Modeling for Hypersonic Flows

Turbulence Modeling for Hypersonic Flows PDF Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
ISBN: 9781722919115
Category :
Languages : en
Pages : 50

Get Book Here

Book Description
Turbulence modeling for high speed compressible flows is described and discussed. Starting with the compressible Navier-Stokes equations, methods of statistical averaging are described by means of which the Reynolds-averaged Navier-Stokes equations are developed. Unknown averages in these equations are approximated using various closure concepts. Zero-, one-, and two-equation eddy viscosity models, algebraic stress models and Reynolds stress transport models are discussed. Computations of supersonic and hypersonic flows obtained using several of the models are discussed and compared with experimental results. Specific examples include attached boundary layer flows, shock wave boundary layer interactions and compressible shear layers. From these examples, conclusions regarding the status of modeling and recommendations for future studies are discussed. Marvin, J. G. and Coakley, T. J. Ames Research Center RTOP 505-60-11...

Quantification of Spalart-Allmaras Turbulence Modeling Uncertainties for Hypersonic Flows Utilizing Output-based Grid Adaptation

Quantification of Spalart-Allmaras Turbulence Modeling Uncertainties for Hypersonic Flows Utilizing Output-based Grid Adaptation PDF Author: Carter John Waligura
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
In this thesis, uncertainty in the Spalart-Allmaras (SA) turbulence model with the compressible Reynolds-averaged Navier-Stokes (RANS) equations is quantified for steady non-reacting hypersonic flows using a coarse-grained uncertainty metric. Output-based adaptation is utilized to guarantee negligible numerical error with complex flow features, such as shock wave-boundary-layer interactions (SBLI). The adapted meshes are generated using MIT Solution Adaptive Numerical Simulator (SANS) software, which is able to adapt high order unstructured meshes using a modified Continuous Galerkin (CG) finite element method (FEM) discretization. The meshes are iteratively adapted by minimizing the error estimate of a given output functional, such as integrated drag or heat flux, over a boundary. The goal of the study is to quantify the expected uncertainty bounds when using the SA model with modifications to the key assumptions of a linear eddy viscosity constitutive relation and incompressible flow. The uncertainty comparison is made between specific areas of hypersonic geometries such as the pre-compression flat plate region and the post-compression shocked-wedge region of a compression corner. Ultimately, this study improves the determination of uncertainty bounds in engineering design involving turbulent flow, provides more insight into exemplary meshing practices for high-speed flow involving SBLI, and highlights where additional work is needed for the development of turbulence models in the hypersonic regime.

Turbulence Compressibility Corrections

Turbulence Compressibility Corrections PDF Author:
Publisher:
ISBN:
Category : Fluid mechanics
Languages : en
Pages : 46

Get Book Here

Book Description


Progress in Turbulence Modeling for Complex Flow Fields Including Effects of Compressibility

Progress in Turbulence Modeling for Complex Flow Fields Including Effects of Compressibility PDF Author: David C. Wilcox
Publisher:
ISBN:
Category : Compressibility
Languages : en
Pages : 80

Get Book Here

Book Description


Evaluation of Various Turbulence Models for Shock-wave Boundary Layer Interaction Flows

Evaluation of Various Turbulence Models for Shock-wave Boundary Layer Interaction Flows PDF Author: Francis Kofi Acquaye
Publisher:
ISBN:
Category : Electronic dissertations
Languages : en
Pages : 53

Get Book Here

Book Description
Despite the modeling capabilities of current computational fluid dynamics (CFD), there still exist problems and inconsistencies in simulating fluid flow in certain flow regimes. Most difficult are the high-speed transonic, supersonic and hypersonic wall-bounded turbulent flows with small or massive regions of separation. To address the problem of the lack of computational accuracy in turbulence modeling, NASA has established the Turbulence Modeling Resource (TMR) website and has issued the NASA 40% Challenge. The aim of this challenge is to identify and improve/develop turbulence and transition models as well as numerical techniques to achieve a 40% reduction in the predictive error in computation of benchmark test cases for turbulent flows. One of the phenomena of considerable interest in the 40% Challenge is the shock-wave boundary layer interaction (SWBLI) that occurs on aircraft surfaces at transonic and supersonic speeds and on space vehicles at hypersonic speeds. The correct modeling of shock-waves is complex enough, but the occurrence of SWBLI adds to the complexity by promoting flow separation, heat transfer, and pressure gradients on the surface. SWBLI may occur in both the external and internal flow path of air and space vehicles; therefore, it is important to accurately predict this phenomenon to improve the design of aircraft and space vehicles. The majority of CFD codes utilize the Reynolds Averaged Navier-Stokes (RANS) equations and employ various turbulence models. The most common among these turbulent models are the one-equation Spalart-Allmaras (SA) model and the two-equation Shear Stress Transport (SST) k-[omega] model. In recent years the CFD community has, in greater number, also started to adopt Large-Eddy Simulation (LES), Direct Numerical Simulation (DNS), and hybrid RANS-LES approaches for improving the accuracy of simulations. However currently, solving the RANS equations with eddy-viscosity turbulence models remains the most commonly used simulation technique in industrial applications. In this research, the one-equation Wray-Agarwal (WA), SA, and SST k-[omega] turbulence models are used to simulate supersonic flows in a 2D compression corner at angles of 8° and 16°, a partial axisymmetric flare of 20°, a full-body conical axisymmetric flare of 20°, and an impinging shock over a flat plate at 6°, 10°, and 14°. The ANSYS Fluent and OpenFOAM flow solvers are employed. Inflow boundary conditions and mesh sensitivity are examined to ensure the grid independence of computed solutions. For each of the three turbulence models, heat transfer, surface pressure, skin friction, and velocity profiles are compared with the available experimental data. It is found that the results from the WA model are in similar or better agreement with the experimental data compared to the SA and SST k-[omega] models for the majority of cases considered.

Advanced Approaches in Turbulence

Advanced Approaches in Turbulence PDF Author: Paul Durbin
Publisher: Elsevier
ISBN: 0128208902
Category : Technology & Engineering
Languages : en
Pages : 554

Get Book Here

Book Description
Advanced Approaches in Turbulence: Theory, Modeling, Simulation and Data Analysis for Turbulent Flows focuses on the updated theory, simulation and data analysis of turbulence dealing mainly with turbulence modeling instead of the physics of turbulence. Beginning with the basics of turbulence, the book discusses closure modeling, direct simulation, large eddy simulation and hybrid simulation. The book also covers the entire spectrum of turbulence models for both single-phase and multi-phase flows, as well as turbulence in compressible flow. Turbulence modeling is very extensive and continuously updated with new achievements and improvements of the models. Modern advances in computer speed offer the potential for elaborate numerical analysis of turbulent fluid flow while advances in instrumentation are creating large amounts of data. This book covers these topics in great detail. - Covers the fundamentals of turbulence updated with recent developments - Focuses on hybrid methods such as DES and wall-modeled LES - Gives an updated treatment of numerical simulation and data analysis

Two-equation Turbulence Modeling for 3-D Hypersonic Flows

Two-equation Turbulence Modeling for 3-D Hypersonic Flows PDF Author: J. E. Bardina
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description