Author: Yasuhisa Omura
Publisher: John Wiley & Sons
ISBN: 1119107350
Category : Technology & Engineering
Languages : en
Pages : 483
Book Description
Helps readers understand the physics behind MOS devices for low-voltage and low-energy applications Based on timely published and unpublished work written by expert authors Discusses various promising MOS devices applicable to low-energy environmental and biomedical uses Describes the physical effects (quantum, tunneling) of MOS devices Demonstrates the performance of devices, helping readers to choose right devices applicable to an industrial or consumer environment Addresses some Ge-based devices and other compound-material-based devices for high-frequency applications and future development of high performance devices. "Seemingly innocuous everyday devices such as smartphones, tablets and services such as on-line gaming or internet keyword searches consume vast amounts of energy. Even when in standby mode, all these devices consume energy. The upcoming 'Internet of Things' (IoT) is expected to deploy 60 billion electronic devices spread out in our homes, cars and cities. Britain is already consuming up to 16 per cent of all its power through internet use and this rate is doubling every four years. According to The UK's Daily Mail May (2015), if usage rates continue, all of Britain's power supply could be consumed by internet use in just 20 years. In 2013, U.S. data centers consumed an estimated 91 billion kilowatt-hours of electricity, corresponding to the power generated by seventeen 1000-megawatt nuclear power plants. Data center electricity consumption is projected to increase to roughly 140 billion kilowatt-hours annually by 2020, the equivalent annual output of 50 nuclear power plants." —Natural Resources Defense Council, USA, Feb. 2015 All these examples stress the urgent need for developing electronic devices that consume as little energy as possible. The book “MOS Devices for Low-Voltage and Low-Energy Applications” explores the different transistor options that can be utilized to achieve that goal. It describes in detail the physics and performance of transistors that can be operated at low voltage and consume little power, such as subthreshold operation in bulk transistors, fully depleted SOI devices, tunnel FETs, multigate and gate-all-around MOSFETs. Examples of low-energy circuits making use of these devices are given as well. "The book MOS Devices for Low-Voltage and Low-Energy Applications is a good reference for graduate students, researchers, semiconductor and electrical engineers who will design the electronic systems of tomorrow." —Dr. Jean-Pierre Colinge, Taiwan Semiconductor Manufacturing Company (TSMC) "The authors present a creative way to show how different MOS devices can be used for low-voltage and low-power applications. They start with Bulk MOSFET, following with SOI MOSFET, FinFET, gate-all-around MOSFET, Tunnel-FET and others. It is presented the physics behind the devices, models, simulations, experimental results and applications. This book is interesting for researchers, graduate and undergraduate students. The low-energy field is an important topic for integrated circuits in the future and none can stay out of this." —Prof. Joao A. Martino, University of Sao Paulo, Brazil
MOS Devices for Low-Voltage and Low-Energy Applications
Author: Yasuhisa Omura
Publisher: John Wiley & Sons
ISBN: 1119107350
Category : Technology & Engineering
Languages : en
Pages : 483
Book Description
Helps readers understand the physics behind MOS devices for low-voltage and low-energy applications Based on timely published and unpublished work written by expert authors Discusses various promising MOS devices applicable to low-energy environmental and biomedical uses Describes the physical effects (quantum, tunneling) of MOS devices Demonstrates the performance of devices, helping readers to choose right devices applicable to an industrial or consumer environment Addresses some Ge-based devices and other compound-material-based devices for high-frequency applications and future development of high performance devices. "Seemingly innocuous everyday devices such as smartphones, tablets and services such as on-line gaming or internet keyword searches consume vast amounts of energy. Even when in standby mode, all these devices consume energy. The upcoming 'Internet of Things' (IoT) is expected to deploy 60 billion electronic devices spread out in our homes, cars and cities. Britain is already consuming up to 16 per cent of all its power through internet use and this rate is doubling every four years. According to The UK's Daily Mail May (2015), if usage rates continue, all of Britain's power supply could be consumed by internet use in just 20 years. In 2013, U.S. data centers consumed an estimated 91 billion kilowatt-hours of electricity, corresponding to the power generated by seventeen 1000-megawatt nuclear power plants. Data center electricity consumption is projected to increase to roughly 140 billion kilowatt-hours annually by 2020, the equivalent annual output of 50 nuclear power plants." —Natural Resources Defense Council, USA, Feb. 2015 All these examples stress the urgent need for developing electronic devices that consume as little energy as possible. The book “MOS Devices for Low-Voltage and Low-Energy Applications” explores the different transistor options that can be utilized to achieve that goal. It describes in detail the physics and performance of transistors that can be operated at low voltage and consume little power, such as subthreshold operation in bulk transistors, fully depleted SOI devices, tunnel FETs, multigate and gate-all-around MOSFETs. Examples of low-energy circuits making use of these devices are given as well. "The book MOS Devices for Low-Voltage and Low-Energy Applications is a good reference for graduate students, researchers, semiconductor and electrical engineers who will design the electronic systems of tomorrow." —Dr. Jean-Pierre Colinge, Taiwan Semiconductor Manufacturing Company (TSMC) "The authors present a creative way to show how different MOS devices can be used for low-voltage and low-power applications. They start with Bulk MOSFET, following with SOI MOSFET, FinFET, gate-all-around MOSFET, Tunnel-FET and others. It is presented the physics behind the devices, models, simulations, experimental results and applications. This book is interesting for researchers, graduate and undergraduate students. The low-energy field is an important topic for integrated circuits in the future and none can stay out of this." —Prof. Joao A. Martino, University of Sao Paulo, Brazil
Publisher: John Wiley & Sons
ISBN: 1119107350
Category : Technology & Engineering
Languages : en
Pages : 483
Book Description
Helps readers understand the physics behind MOS devices for low-voltage and low-energy applications Based on timely published and unpublished work written by expert authors Discusses various promising MOS devices applicable to low-energy environmental and biomedical uses Describes the physical effects (quantum, tunneling) of MOS devices Demonstrates the performance of devices, helping readers to choose right devices applicable to an industrial or consumer environment Addresses some Ge-based devices and other compound-material-based devices for high-frequency applications and future development of high performance devices. "Seemingly innocuous everyday devices such as smartphones, tablets and services such as on-line gaming or internet keyword searches consume vast amounts of energy. Even when in standby mode, all these devices consume energy. The upcoming 'Internet of Things' (IoT) is expected to deploy 60 billion electronic devices spread out in our homes, cars and cities. Britain is already consuming up to 16 per cent of all its power through internet use and this rate is doubling every four years. According to The UK's Daily Mail May (2015), if usage rates continue, all of Britain's power supply could be consumed by internet use in just 20 years. In 2013, U.S. data centers consumed an estimated 91 billion kilowatt-hours of electricity, corresponding to the power generated by seventeen 1000-megawatt nuclear power plants. Data center electricity consumption is projected to increase to roughly 140 billion kilowatt-hours annually by 2020, the equivalent annual output of 50 nuclear power plants." —Natural Resources Defense Council, USA, Feb. 2015 All these examples stress the urgent need for developing electronic devices that consume as little energy as possible. The book “MOS Devices for Low-Voltage and Low-Energy Applications” explores the different transistor options that can be utilized to achieve that goal. It describes in detail the physics and performance of transistors that can be operated at low voltage and consume little power, such as subthreshold operation in bulk transistors, fully depleted SOI devices, tunnel FETs, multigate and gate-all-around MOSFETs. Examples of low-energy circuits making use of these devices are given as well. "The book MOS Devices for Low-Voltage and Low-Energy Applications is a good reference for graduate students, researchers, semiconductor and electrical engineers who will design the electronic systems of tomorrow." —Dr. Jean-Pierre Colinge, Taiwan Semiconductor Manufacturing Company (TSMC) "The authors present a creative way to show how different MOS devices can be used for low-voltage and low-power applications. They start with Bulk MOSFET, following with SOI MOSFET, FinFET, gate-all-around MOSFET, Tunnel-FET and others. It is presented the physics behind the devices, models, simulations, experimental results and applications. This book is interesting for researchers, graduate and undergraduate students. The low-energy field is an important topic for integrated circuits in the future and none can stay out of this." —Prof. Joao A. Martino, University of Sao Paulo, Brazil
Tunneling Field Effect Transistor Technology
Author: Lining Zhang
Publisher: Springer
ISBN: 3319316532
Category : Technology & Engineering
Languages : en
Pages : 217
Book Description
This book provides a single-source reference to the state-of-the art in tunneling field effect transistors (TFETs). Readers will learn the TFETs physics from advanced atomistic simulations, the TFETs fabrication process and the important roles that TFETs will play in enabling integrated circuit designs for power efficiency.
Publisher: Springer
ISBN: 3319316532
Category : Technology & Engineering
Languages : en
Pages : 217
Book Description
This book provides a single-source reference to the state-of-the art in tunneling field effect transistors (TFETs). Readers will learn the TFETs physics from advanced atomistic simulations, the TFETs fabrication process and the important roles that TFETs will play in enabling integrated circuit designs for power efficiency.
Tunnel Field-effect Transistors (TFET)
Author: Jagadesh Kumar Mamidala
Publisher: John Wiley & Sons
ISBN: 111924630X
Category : Technology & Engineering
Languages : en
Pages : 208
Book Description
Research into Tunneling Field Effect Transistors (TFETs) has developed significantly in recent times, indicating their significance in low power integrated circuits. This book describes the qualitative and quantitative fundamental concepts of TFET functioning, the essential components of the problem of modelling the TFET, and outlines the most commonly used mathematical approaches for the same in a lucid language. Divided into eight chapters, the topics covered include: Quantum Mechanics, Basics of Tunneling, The Tunnel FET, Drain current modelling of Tunnel FET: The task and its challenges, Modeling the Surface Potential in TFETs, Modelling the Drain Current, and Device simulation using Technology Computer Aided Design (TCAD). The information is well organized, describing different phenomena in the TFETs using simple and logical explanations. Key features: * Enables readers to understand the basic concepts of TFET functioning and modelling in order to read, understand, and critically analyse current research on the topic with ease. * Includes state-of-the-art work on TFETs, attempting to cover all the recent research articles published on the subject. * Discusses the basic physics behind tunneling, as well as the device physics of the TFETs. * Provides detailed discussion on device simulations along with device physics so as to enable researchers to carry forward their study on TFETs. Primarily targeted at new and practicing researchers and post graduate students, the book would particularly be useful for researchers who are working in the area of compact and analytical modelling of semiconductor devices.
Publisher: John Wiley & Sons
ISBN: 111924630X
Category : Technology & Engineering
Languages : en
Pages : 208
Book Description
Research into Tunneling Field Effect Transistors (TFETs) has developed significantly in recent times, indicating their significance in low power integrated circuits. This book describes the qualitative and quantitative fundamental concepts of TFET functioning, the essential components of the problem of modelling the TFET, and outlines the most commonly used mathematical approaches for the same in a lucid language. Divided into eight chapters, the topics covered include: Quantum Mechanics, Basics of Tunneling, The Tunnel FET, Drain current modelling of Tunnel FET: The task and its challenges, Modeling the Surface Potential in TFETs, Modelling the Drain Current, and Device simulation using Technology Computer Aided Design (TCAD). The information is well organized, describing different phenomena in the TFETs using simple and logical explanations. Key features: * Enables readers to understand the basic concepts of TFET functioning and modelling in order to read, understand, and critically analyse current research on the topic with ease. * Includes state-of-the-art work on TFETs, attempting to cover all the recent research articles published on the subject. * Discusses the basic physics behind tunneling, as well as the device physics of the TFETs. * Provides detailed discussion on device simulations along with device physics so as to enable researchers to carry forward their study on TFETs. Primarily targeted at new and practicing researchers and post graduate students, the book would particularly be useful for researchers who are working in the area of compact and analytical modelling of semiconductor devices.
Fundamentals of Tunnel Field-Effect Transistors
Author: Sneh Saurabh
Publisher: CRC Press
ISBN: 1315350262
Category : Science
Languages : en
Pages : 216
Book Description
During the last decade, there has been a great deal of interest in TFETs. To the best authors’ knowledge, no book on TFETs currently exists. The proposed book provides readers with fundamental understanding of the TFETs. It explains the interesting characteristics of the TFETs, pointing to their strengths and weaknesses, and describes the novel techniques that can be employed to overcome these weaknesses and improve their characteristics. Different tradeoffs that can be made in designing TFETs have also been highlighted. Further, the book provides simulation example files of TFETs that could be run using a commercial device simulator.
Publisher: CRC Press
ISBN: 1315350262
Category : Science
Languages : en
Pages : 216
Book Description
During the last decade, there has been a great deal of interest in TFETs. To the best authors’ knowledge, no book on TFETs currently exists. The proposed book provides readers with fundamental understanding of the TFETs. It explains the interesting characteristics of the TFETs, pointing to their strengths and weaknesses, and describes the novel techniques that can be employed to overcome these weaknesses and improve their characteristics. Different tradeoffs that can be made in designing TFETs have also been highlighted. Further, the book provides simulation example files of TFETs that could be run using a commercial device simulator.
Advanced Nanoelectronics
Author: Muhammad Mustafa Hussain
Publisher: John Wiley & Sons
ISBN: 352734358X
Category : Technology & Engineering
Languages : en
Pages : 284
Book Description
Brings novel insights to a vibrant research area with high application potential?covering materials, physics, architecture, and integration aspects of future generation CMOS electronics technology Over the last four decades we have seen tremendous growth in semiconductor electronics. This growth has been fueled by the matured complementary metal oxide semiconductor (CMOS) technology. This comprehensive book captures the novel device options in CMOS technology that can be realized using non-silicon semiconductors. It discusses germanium, III-V materials, carbon nanotubes and graphene as semiconducting materials for three-dimensional field-effect transistors. It also covers non-conventional materials such as nanowires and nanotubes. Additionally, nanoelectromechanical switches-based mechanical relays and wide bandgap semiconductor-based terahertz electronics are reviewed as essential add-on electronics for enhanced communication and computational capabilities. Advanced Nanoelectronics: Post-Silicon Materials and Devices begins with a discussion of the future of CMOS. It continues with comprehensive chapter coverage of: nanowire field effect transistors; two-dimensional materials for electronic applications; the challenges and breakthroughs of the integration of germanium into modern CMOS; carbon nanotube logic technology; tunnel field effect transistors; energy efficient computing with negative capacitance; spin-based devices for logic, memory and non-Boolean architectures; and terahertz properties and applications of GaN. -Puts forward novel approaches for future, state-of-the-art, nanoelectronic devices -Discusses emerging materials and architectures such as alternate channel material like germanium, gallium nitride, 1D nanowires/tubes, 2D graphene, and other dichalcogenide materials and ferroelectrics -Examines new physics such as spintronics, negative capacitance, quantum computing, and 3D-IC technology -Brings together the latest developments in the field for easy reference -Enables academic and R&D researchers in semiconductors to "think outside the box" and explore beyond silica An important resource for future generation CMOS electronics technology, Advanced Nanoelectronics: Post-Silicon Materials and Devices will appeal to materials scientists, semiconductor physicists, semiconductor industry, and electrical engineers.
Publisher: John Wiley & Sons
ISBN: 352734358X
Category : Technology & Engineering
Languages : en
Pages : 284
Book Description
Brings novel insights to a vibrant research area with high application potential?covering materials, physics, architecture, and integration aspects of future generation CMOS electronics technology Over the last four decades we have seen tremendous growth in semiconductor electronics. This growth has been fueled by the matured complementary metal oxide semiconductor (CMOS) technology. This comprehensive book captures the novel device options in CMOS technology that can be realized using non-silicon semiconductors. It discusses germanium, III-V materials, carbon nanotubes and graphene as semiconducting materials for three-dimensional field-effect transistors. It also covers non-conventional materials such as nanowires and nanotubes. Additionally, nanoelectromechanical switches-based mechanical relays and wide bandgap semiconductor-based terahertz electronics are reviewed as essential add-on electronics for enhanced communication and computational capabilities. Advanced Nanoelectronics: Post-Silicon Materials and Devices begins with a discussion of the future of CMOS. It continues with comprehensive chapter coverage of: nanowire field effect transistors; two-dimensional materials for electronic applications; the challenges and breakthroughs of the integration of germanium into modern CMOS; carbon nanotube logic technology; tunnel field effect transistors; energy efficient computing with negative capacitance; spin-based devices for logic, memory and non-Boolean architectures; and terahertz properties and applications of GaN. -Puts forward novel approaches for future, state-of-the-art, nanoelectronic devices -Discusses emerging materials and architectures such as alternate channel material like germanium, gallium nitride, 1D nanowires/tubes, 2D graphene, and other dichalcogenide materials and ferroelectrics -Examines new physics such as spintronics, negative capacitance, quantum computing, and 3D-IC technology -Brings together the latest developments in the field for easy reference -Enables academic and R&D researchers in semiconductors to "think outside the box" and explore beyond silica An important resource for future generation CMOS electronics technology, Advanced Nanoelectronics: Post-Silicon Materials and Devices will appeal to materials scientists, semiconductor physicists, semiconductor industry, and electrical engineers.
2021 8th International Conference on Signal Processing and Integrated Networks (SPIN)
Author: IEEE Staff
Publisher:
ISBN: 9781665402552
Category :
Languages : en
Pages :
Book Description
The conference will be devoted to all advancements in Signal Processing and Integrated Networks Researchers from all over the country and abroad will gather virtually in order to introduce their recent advances in the field and thereby promote the exchange of new ideas, results and techniques The conference will be a successive catalyst in promoting research work, sharing views and getting innovative ideas in this field
Publisher:
ISBN: 9781665402552
Category :
Languages : en
Pages :
Book Description
The conference will be devoted to all advancements in Signal Processing and Integrated Networks Researchers from all over the country and abroad will gather virtually in order to introduce their recent advances in the field and thereby promote the exchange of new ideas, results and techniques The conference will be a successive catalyst in promoting research work, sharing views and getting innovative ideas in this field
Semiconductor Devices and Technologies for Future Ultra Low Power Electronics
Author: D. Nirmal
Publisher: CRC Press
ISBN: 1000475360
Category : Technology & Engineering
Languages : en
Pages : 314
Book Description
This book covers the fundamentals and significance of 2-D materials and related semiconductor transistor technologies for the next-generation ultra low power applications. It provides comprehensive coverage on advanced low power transistors such as NCFETs, FinFETs, TFETs, and flexible transistors for future ultra low power applications owing to their better subthreshold swing and scalability. In addition, the text examines the use of field-effect transistors for biosensing applications and covers design considerations and compact modeling of advanced low power transistors such as NCFETs, FinFETs, and TFETs. TCAD simulation examples are also provided. FEATURES Discusses the latest updates in the field of ultra low power semiconductor transistors Provides both experimental and analytical solutions for TFETs and NCFETs Presents synthesis and fabrication processes for FinFETs Reviews details on 2-D materials and 2-D transistors Explores the application of FETs for biosensing in the healthcare field This book is aimed at researchers, professionals, and graduate students in electrical engineering, electronics and communication engineering, electron devices, nanoelectronics and nanotechnology, microelectronics, and solid-state circuits.
Publisher: CRC Press
ISBN: 1000475360
Category : Technology & Engineering
Languages : en
Pages : 314
Book Description
This book covers the fundamentals and significance of 2-D materials and related semiconductor transistor technologies for the next-generation ultra low power applications. It provides comprehensive coverage on advanced low power transistors such as NCFETs, FinFETs, TFETs, and flexible transistors for future ultra low power applications owing to their better subthreshold swing and scalability. In addition, the text examines the use of field-effect transistors for biosensing applications and covers design considerations and compact modeling of advanced low power transistors such as NCFETs, FinFETs, and TFETs. TCAD simulation examples are also provided. FEATURES Discusses the latest updates in the field of ultra low power semiconductor transistors Provides both experimental and analytical solutions for TFETs and NCFETs Presents synthesis and fabrication processes for FinFETs Reviews details on 2-D materials and 2-D transistors Explores the application of FETs for biosensing in the healthcare field This book is aimed at researchers, professionals, and graduate students in electrical engineering, electronics and communication engineering, electron devices, nanoelectronics and nanotechnology, microelectronics, and solid-state circuits.
Tunnel Field-effect Transistors (TFET)
Author: Jagadesh Kumar Mamidala
Publisher: John Wiley & Sons
ISBN: 1119246288
Category : Technology & Engineering
Languages : en
Pages : 208
Book Description
Research into Tunneling Field Effect Transistors (TFETs) has developed significantly in recent times, indicating their significance in low power integrated circuits. This book describes the qualitative and quantitative fundamental concepts of TFET functioning, the essential components of the problem of modelling the TFET, and outlines the most commonly used mathematical approaches for the same in a lucid language. Divided into eight chapters, the topics covered include: Quantum Mechanics, Basics of Tunneling, The Tunnel FET, Drain current modelling of Tunnel FET: The task and its challenges, Modeling the Surface Potential in TFETs, Modelling the Drain Current, and Device simulation using Technology Computer Aided Design (TCAD). The information is well organized, describing different phenomena in the TFETs using simple and logical explanations. Key features: * Enables readers to understand the basic concepts of TFET functioning and modelling in order to read, understand, and critically analyse current research on the topic with ease. * Includes state-of-the-art work on TFETs, attempting to cover all the recent research articles published on the subject. * Discusses the basic physics behind tunneling, as well as the device physics of the TFETs. * Provides detailed discussion on device simulations along with device physics so as to enable researchers to carry forward their study on TFETs. Primarily targeted at new and practicing researchers and post graduate students, the book would particularly be useful for researchers who are working in the area of compact and analytical modelling of semiconductor devices.
Publisher: John Wiley & Sons
ISBN: 1119246288
Category : Technology & Engineering
Languages : en
Pages : 208
Book Description
Research into Tunneling Field Effect Transistors (TFETs) has developed significantly in recent times, indicating their significance in low power integrated circuits. This book describes the qualitative and quantitative fundamental concepts of TFET functioning, the essential components of the problem of modelling the TFET, and outlines the most commonly used mathematical approaches for the same in a lucid language. Divided into eight chapters, the topics covered include: Quantum Mechanics, Basics of Tunneling, The Tunnel FET, Drain current modelling of Tunnel FET: The task and its challenges, Modeling the Surface Potential in TFETs, Modelling the Drain Current, and Device simulation using Technology Computer Aided Design (TCAD). The information is well organized, describing different phenomena in the TFETs using simple and logical explanations. Key features: * Enables readers to understand the basic concepts of TFET functioning and modelling in order to read, understand, and critically analyse current research on the topic with ease. * Includes state-of-the-art work on TFETs, attempting to cover all the recent research articles published on the subject. * Discusses the basic physics behind tunneling, as well as the device physics of the TFETs. * Provides detailed discussion on device simulations along with device physics so as to enable researchers to carry forward their study on TFETs. Primarily targeted at new and practicing researchers and post graduate students, the book would particularly be useful for researchers who are working in the area of compact and analytical modelling of semiconductor devices.
Junctionless Field-Effect Transistors
Author: Shubham Sahay
Publisher: John Wiley & Sons
ISBN: 1119523532
Category : Technology & Engineering
Languages : en
Pages : 496
Book Description
A comprehensive one-volume reference on current JLFET methods, techniques, and research Advancements in transistor technology have driven the modern smart-device revolution—many cell phones, watches, home appliances, and numerous other devices of everyday usage now surpass the performance of the room-filling supercomputers of the past. Electronic devices are continuing to become more mobile, powerful, and versatile in this era of internet-of-things (IoT) due in large part to the scaling of metal-oxide semiconductor field-effect transistors (MOSFETs). Incessant scaling of the conventional MOSFETs to cater to consumer needs without incurring performance degradation requires costly and complex fabrication process owing to the presence of metallurgical junctions. Unlike conventional MOSFETs, junctionless field-effect transistors (JLFETs) contain no metallurgical junctions, so they are simpler to process and less costly to manufacture.JLFETs utilize a gated semiconductor film to control its resistance and the current flowing through it. Junctionless Field-Effect Transistors: Design, Modeling, and Simulation is an inclusive, one-stop referenceon the study and research on JLFETs This timely book covers the fundamental physics underlying JLFET operation, emerging architectures, modeling and simulation methods, comparative analyses of JLFET performance metrics, and several other interesting facts related to JLFETs. A calibrated simulation framework, including guidance on SentaurusTCAD software, enables researchers to investigate JLFETs, develop new architectures, and improve performance. This valuable resource: Addresses the design and architecture challenges faced by JLFET as a replacement for MOSFET Examines various approaches for analytical and compact modeling of JLFETs in circuit design and simulation Explains how to use Technology Computer-Aided Design software (TCAD) to produce numerical simulations of JLFETs Suggests research directions and potential applications of JLFETs Junctionless Field-Effect Transistors: Design, Modeling, and Simulation is an essential resource for CMOS device design researchers and advanced students in the field of physics and semiconductor devices.
Publisher: John Wiley & Sons
ISBN: 1119523532
Category : Technology & Engineering
Languages : en
Pages : 496
Book Description
A comprehensive one-volume reference on current JLFET methods, techniques, and research Advancements in transistor technology have driven the modern smart-device revolution—many cell phones, watches, home appliances, and numerous other devices of everyday usage now surpass the performance of the room-filling supercomputers of the past. Electronic devices are continuing to become more mobile, powerful, and versatile in this era of internet-of-things (IoT) due in large part to the scaling of metal-oxide semiconductor field-effect transistors (MOSFETs). Incessant scaling of the conventional MOSFETs to cater to consumer needs without incurring performance degradation requires costly and complex fabrication process owing to the presence of metallurgical junctions. Unlike conventional MOSFETs, junctionless field-effect transistors (JLFETs) contain no metallurgical junctions, so they are simpler to process and less costly to manufacture.JLFETs utilize a gated semiconductor film to control its resistance and the current flowing through it. Junctionless Field-Effect Transistors: Design, Modeling, and Simulation is an inclusive, one-stop referenceon the study and research on JLFETs This timely book covers the fundamental physics underlying JLFET operation, emerging architectures, modeling and simulation methods, comparative analyses of JLFET performance metrics, and several other interesting facts related to JLFETs. A calibrated simulation framework, including guidance on SentaurusTCAD software, enables researchers to investigate JLFETs, develop new architectures, and improve performance. This valuable resource: Addresses the design and architecture challenges faced by JLFET as a replacement for MOSFET Examines various approaches for analytical and compact modeling of JLFETs in circuit design and simulation Explains how to use Technology Computer-Aided Design software (TCAD) to produce numerical simulations of JLFETs Suggests research directions and potential applications of JLFETs Junctionless Field-Effect Transistors: Design, Modeling, and Simulation is an essential resource for CMOS device design researchers and advanced students in the field of physics and semiconductor devices.
Design, Simulation and Construction of Field Effect Transistors
Author: Dhanasekaran Vikraman
Publisher: BoD – Books on Demand
ISBN: 1789234166
Category : Technology & Engineering
Languages : en
Pages : 168
Book Description
In recent years, research on microelectronics has been specifically focused on the proposition of efficient alternative methodologies and materials to fabricate feasible integrated circuits. This book provides a general background of thin film transistors and their simulations and constructions. The contents of the book are broadly classified into two topics: design and simulation of FETs and construction of FETs. All the authors anticipate that the provided chapters will act as a single source of reference for the design, simulation and construction of FETs. This edited book will help microelectronics researchers with their endeavors and would be a great addition to the realm of semiconductor physics.
Publisher: BoD – Books on Demand
ISBN: 1789234166
Category : Technology & Engineering
Languages : en
Pages : 168
Book Description
In recent years, research on microelectronics has been specifically focused on the proposition of efficient alternative methodologies and materials to fabricate feasible integrated circuits. This book provides a general background of thin film transistors and their simulations and constructions. The contents of the book are broadly classified into two topics: design and simulation of FETs and construction of FETs. All the authors anticipate that the provided chapters will act as a single source of reference for the design, simulation and construction of FETs. This edited book will help microelectronics researchers with their endeavors and would be a great addition to the realm of semiconductor physics.